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1 Project

Background: Orthopedic surgeries are often time intensive and require the correct placement of different
tools inside of the human body. Within these surgeries, surgeons use cone beam computer tomography
(CBCT) to ensure that they are correctly guiding objects into the damaged area of the patient. This process
often requires hundreds of scans, which lengthens procedural time and exposes the physician and patient to
high radiation dosages.

Work has been done to develop a mixed-reality visualization that allows physicians to see in real-time if they
are correctly placing objects. A manual calibration algorithm has been developed to create a mixed-reality
visualization by performing a one-time calibration between a 3D Red-Green-Blue Depth (RGBD) camera
and the CBCT scanner [1]. It is this project’s goal to create a standalone automated calibration algorithm
between the CBCT and RGBD scanner with minimal dependencies.

Paper Selection: During the registration between the RGBD and CBCT point clouds, common algorithms
such as Iterative Closest Point (ICP), do not converge to the global error minimum and instead converge
to a local minimum. The following paper details an algorithm that utilizes geometric features to find an
initial registration (rotation matrix and translation vector) between two 3D Point Clouds that places the
registration in the global minimum area. This algorithm is currently utilized in the manual calibration
algorithm developed for this project, but it is time intensive in the current pipeline, and studying this
algorithm might lead to future improvements.

2 Significance

Problem: 3D point cloud to point cloud registration algorithms are used to align two different views of
an object in space. This alignment is performed by finding the best transformation, i.e. a rotation and
translation, to transform one point cloud into another. Many optimization techniques can be utilized to find
the transformation that minimizes the distance between respective points within two clouds. Often times
these algorithms fail because they become trapped in a local minimum despite the solution being incorrect.
One example of this is the popular Iterative Closest Point Algorithm [2]. ICP has had many improvements,
but still often falls into local minimum trap.

Key Result: This paper proposes a new algorithm using fast point feature histograms (FPFH) to perform
an initial alignment that places a registration into the correct local minimum space, and thus the registration
can be fine-tuned with an algorithm such as ICP. The algorithm builds upon previous work of the author
that proposed a novel way to analyze geometric features of a point cloud, called point feature histograms
(PFH) [3].

3 Background

Point Feature Histograms (PFH): Point Feature Histograms (PFH) are previously proposed pose-
invariant local features that are based upon surface model properties of a point, p in a cloud [4]. Their
computation is based upon the 3D point coordinates (x, y, z) and the surface normal at that point, as well
as relevant information from p’s k nearest neighbors. To compute the PFH of a point, a radius r is chosen,
and all neighbors to a point p within distance ≤ r from p are selected. For each pair of points pi, pj , i 6= j
in this neighborhood with normals ni, nj , the following frame (u, v, n) is calculated as follows:

u = ni

v = (pj − pi)× u

w = u× v

and from these the following angular variations of the surface normals are found:
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α = v · nj

φ =
(u · (pj − pi))
||pj − pi||

θ = arctan(w · nj , u · nj)

Figure 1: Angle metrics that are invariant under rigid transformations

Persistence: A large issue with using PFH is that for a point cloud P a lot of memory is required to extract
the proposed angular features for each point in a cloud. The paper chooses to concentrate on prominent
points throughout a cloud, and disregard points that are dominant throughout an entire dataset (i.e. points
with similar features to other points in the cloud). This analysis is called a persistence analysis, and it is
performed by finding the mean PFH of a dataset, µ and only selecting less common points outside of some
range µ± βσ for some user-defined parameter β.

It is possible that density variations in points might affect how a PFH performs over different radii ri, rj .
Thus, points are chosen such that given two different radii, ri, ri+1, the points appear persistent over both
radii. Thus, if Pfi signifies the set of persistent points at radii ri, the full set of persistent points can be
written as:

Pf =

n−1⋃
i=1

[Pfi ∩ Pfi+1 ]

Figure 2: PFH persistence of varying radii from r = 0.003-0.005 cm as well as overall points

Geometric Signatures: The PFH space can be analyzed in two ways. (1) it can dictate informative
information about the specific point cloud of a certain geometric object, and (2) it can be shown to have
discriminatory power between different geometric objects. To prove the discriminatory power of PFH,
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five different convex surfaces were analyzed. The following confusion matrices showed the different mean
histograms of the shapes:

Figure 3: PFH and discrimination between different geometric shapes

Caching and Point Ordering: In addition to using persistence analysis, other tools can be utilized to
reduce the amount of memory to compute a point’s PFH. Note that while calculating the PFH of two
neighboring points p and q, it is likely that many neighbors of p are also neighbors of q. Thus, a cache can
be utilized to help with fast recall of recently computed PFHs. Using a cache and nearest neighbor tree to
sort points actually reduced runtime to 75% of its original value.

4 Methods

Fast Point Feature Histograms (FPFH): In a point cloud with n points, each with k neighbors, the
computational complexity of creating a PFH is O(n · k2). This, the paper proposes using a simplified
histogram computation, called a Fast Point Feature Histogram (FPFH) to reduce computational space to
O(n · k).

The basic idea for computing an FPFH for a given point p in a cloud is to compute the relationships just
between a point p and its neighbors, not every pair of neighbors. This will be called a Simplified Point
Feature Histogram (SPFH). The paper then presents weighting the final features for a point p by using the
SPFH and the corresponding distance, wk, between a point p and its neighbor’s SPFH pk:

FPFH(p) = SPFH(p) +
1

k

k∑
i=1

1

wk
· SPFH(pk)

Persistence: A persistence analysis was conducted using FPFHs on the same phantom as before. Most of
the discriminating power was retained, but some small details were lost. Using the same geometric figures as
before, the power of the FPFH was then tested. The uncorrelated histograms lost their informative power,
but the confusion matrix showed that the FPFH could still discriminate between objects.

Figure 4: FPFH persistence of varying radii from r = 0.003-0.005 cm as well as overall points
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Figure 5: FPFH and discrimination between different geometric shapes

Online Implementation: The paper then describes one useful online implementation of the algorithm -
for single sweep medical scans, like a 2D X-Ray. The algorithm simply maintains a list of points in a queue,
for each a point a list of its k nearest neighbors. As soon as a new scan does not affect a certain point’s list
of neighbors, the point is processed.

4.1 Sample Consensus Initial Alignment (SAC-IA)

Lastly, FPFH’s are applied to an algorithm for 3D-3D registration, called the Sample Consensus Initial
Alignment (SAC-IA) method. The algorithm essentially:

1. Selects sample points s from a point cloud P that are at least a certain distance from each other,
specified by a user as dmin.

2. For each sample point, a list of points in another cloud Q are selected that are similar to this point’s
histogram.

3. Rigid transformations are calculated between the sample points and their corresponding points in the
other cloud. The error metric (Huber Penalty, Lh) defined below is utilized. The transformation with
the lowest Lh is kept, and after a set number of iterations the algorithm terminates.

Lh(ei) =

{
1
2e

2
i ||ei|| ≤ te

1
2 te(2||ei|| − te) ||ei|| > te

5 Results

Experimental Results: The paper compares the results of SAC-IA with a previously proposed Greedy
Initial Alignment (GIA) algorithm that searches through every point in a dataset instead of sampling points.
SAC-IA outperformed the GIA with respect to speed and the number of points considered in this time
period. No metrics were provided on the error of using SAC-IA with FPFH.

Conclusions: FPFH proves a good solution to finding an initial alignment of two point clouds, and can
thus be refined using another algorithm after the initial alignment is found. The authors propose that they
will investigate the robustness of the algorithm with noisier data in the future, and to learn about other uses
for FPFH, like fast scene segmentation.
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Figure 6: GIA vs. SAC-IA runtime and points considered using FPFH

Figure 7: Alignment of an outdoor dataset using SAC-IA with FPFH

6 Review

Thoughts: The paper provided an adequate conceptual understanding of using FPFH, and its advancements
compared to its slower predecessor, PFH. It proves why using features might be a good place for an initial
alignment for two points clouds, and thus offers slight comparison to other existing alignment algorithms
that have been traditionally used.

Where the paper lacks information is in the results section. The paper does a quick comparison of an old
algorithm (GIA) compared to a new algorithm SAC-IA using FPFH. It does not compare the accuracy and
precision of using FPFH for alignment, which is a large contributor for determining whether FPFH is a good
algorithm to use. Thus, there is really only a minimal and non-convincing validation for using FPFH for
image registration. It also is not consistent with its acronyms (SPFH vs SPF) and spent about half of the
paper describing background knowledge instead of proving uses for its methodology.

Project Relevance: In our maximum deliverable, a possible goal is to find an alternative to using FPFH.
Therefore, the purpose of studying this paper was to learn why FPFH might not be a good enough choice for
our calibration. Unfortunately, the paper only mentioned a single example to when FPFH was utilized, and
this example had a short runtime. Thus, more experiments will have to be conducted to see why SAC-IA is
slow.
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