Augmented Reality for Orthopedic and Trauma Surgery

Dan Adler and Tiffany Chung

Mentors: Dr. Nassir Navab, Bernhard Fuerst,

Sing Chun Lee, Javad Fotouhi

Project 6

Background

Orthopaedic surgeries are time intensive and require multiple images to ensure correct placement and direction of tools

Research has been done to create a manual calibration algorithm, that creates an intra-operative mixed-reality visualization

Minimizes: Time, X-ray images, Radiation Dosage, Task load

Dependencies

Met Data: Created Workspace: Mock OR Technology: CBCT, RGBD Software:MeshLab/PCL/ImFusion Phantoms: Created and cheap Code Backup: LCSR Gitlab

<u>Unmet</u> Operating system Clinician input Data backup (working out) Radiation Safety (potentially)

Background

Dependencies

Plan

Deliverables

Workflow

Timeline

Technical Plan

Phase 1 - Done in ImFusion SDK KinFu generates the surface and export as point clouds Segmentation on CBCT and export the meshes

Phase 2 - Done in Meshl ab Filter and extract the useful point clouds in KinFu Same for CBCT

Phase 3 - Done in PCL

Transform the point clouds to PCL pcd format FPFH for initialization, currently hard-coded ICP for refining the results

Validation Can test automated calibration vs. manual calibration results

Dependencies

Plan

Deliverables

Workflow

Timeline

Management Plan

Daniel Adler

- Mathematical modeling background, data analysis background, C++ experience, GUI design experience
- **PLAN:** Ensure algorithm is outlined to easily create the automation. Design experiments for RGBD/CBCT registration. Will make sure communication is constant and logbook is up to date.

Tiffany Chung

- Extensive C++ experience, computer vision and augmented reality work
- PLAN: Create design algorithm, and correctly setup component communication between SDKs. Perform data analysis for validation. Ensure deadlines are being reached, and code systems are backed up and documented.

Deliverables

Minimum: Automate the calibration algorithm such that the program will take raw data and return the combined registration.

Expected: Create a simple user interface with ImFusion so that 3D visualization appears with minimal instruction, a "one-click" solution.

Maximum: Propose and implement prototypes for alternative method from literature research.

Information Flow

Timeline

References

Fischer M, Fuerst B, Lee SC, Fotouhi J, Habert S, Weidert S, Euler E, Osgood G, Navab N. Pre-Clinical Usability Study of Multiple Augmented Reality Concepts for K-Wire Placement. *International Journal of Computer Assisted Radiology and Surgery / International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)*, Heidelberg, June 2016.

Kojcev R, Fuerst B, Zettining O, Fotouhi J, Lee SC, Taylor R, Sinibaldi E, Navab N. Dual-Robot Ultrasound-Guided Needle Placement: Closing the Planning-Imaging-Action Loop. *International Journal of Computer Assisted Radiology and Surgery / International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)*, Heidelberg, June 2016

Lee SC, Fuerst B, Fotouhi J, Fischer M, Osgood G, Navab N. Calibration of RGBD Camera and Cone-Beam CT for 3D Intra-operative Mixed Reality Visualization. *International Journal of Computer Assisted Radiology and Surgery / International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)*, Heidelberg, June 2016

Rusu RB, Blodow N, Beetz M. 2009. Fast point feature histograms (FPFH) for 3D registration. In *Proceedings of the 2009 IEEE international conference on Robotics and Automation* (ICRA'09). IEEE Press, Piscataway, NJ, USA, 1848-1853.

Torr, P., Zisserman, A.: Mlesac: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78(1), 138 – 156 (2000). DOI http://dx.doi.org/10.1006/cviu.1999.0832. URL http://www.sciencedirect.com/ science/article/pii/S1077314299908329

