iPASS: Photoacoustic Catheter Tracking

Computer Integrated Surgery II **Spring**, 2016

Yuttana Itsarachaiyot, under the auspices of Alexis Cheng, Younsu Kim, Professor Emad Boctor and Professor Russell Taylor

Introduction

- This work is another way for tracking a catheter inside the patient body
- Using the photoacoustic effect to generate an ultrasonic image that can appear on stereo camera video
- We detect the motion of catheter by attaching the piezoelectric element to the catheter

Photoacoustic Catheter Tracking Concept

Problem

- Catheter tracking is commonly done by using X-ray
- Using radiation during the catheter tracking by using X-ray is harmful to patients' health
- In standard X-ray catheter tracking, there is only twodimensional view where the catheter is
- They also require surgical tools to be modified with tracked markers
- Standard optical or electromagnetic trackers are limited to errors larger than 3 mm

Results

- N = 20 at each location for synthetic phantom
- This system shows lower errors (~ 1-2 mm) than the standard optical or electromagnetic systems (~ 3 mm)

	<u> </u>		
Location	Repeatability (mm)		
Bottom Left (LB)	1.60 ± 1.13		
Upper Left (LU)	1.46 ± 0.94		
Bottom Right (RB)	2.14 ± 1.46		
Upper Right (RU)	3.12 ± 2.43		

Repeatability Validation Results of Synthetic Phantom Experiment at Each Locations Using 3 **Points**

	Calculated	True	Error (%)
Locations	Distance	Distance	
	(mm)	(mm)	
Bottom Left & Upper Left	69.93	71.12	1.71
Bottom Right & Upper Right	68.43	71.12	3.93
Bottom Left & Bottom Right	96.66	93.47	3.30
Upper Left & Upper Right	96.30	93.47	2.94

Relative Distance Validation Results of Synthetic Phantom Experiment between Mean Points of **Locations Using 3 Points**

Future Work

Relative Distance Validation Results of Synthetic Phantom Experiment between Mean Points of **Locations With Different Number of Points**

Data analysis and validation need to be rigorously executed

Develop real-time tracking system

Conduct more experimental trials

Store all data for debugging purposes

Paper submitted to MICCAI 2016

Project plan needs to be regularly revised

Conduct in-vivo trials

Lessons Learned

Solution

Sequentially/Concurrently shine multiple laser points with fiber delivery system

Collect stereo camera images Triangulate stereo camera images Segment laser points Trilaterate PA spot Validation

Image of Shining Laser on Synthetic Phantom

Acknowledgements

Publications

I thank Alexis Cheng, and Younsu Kim for their help and support in setting up the system

Credit

