"Adaptive Simplification of Point Cloud Using *k*-means Clustering"

Authors: Bao-Quan Shi, Jin Liang, Qing Liu

Joseph Min - Group 9 Mentors: Russell Taylor, Yunus Sivimli, Bernhard Fuerst

Project Recap

Introduction

Initialization

Boundary

Subdivision

Refinement

Paper Introduction

Problem: 3D clouds can be extremely dense

- Large storage space
- Long post-processing times

Solution: Remove unnecessary points

 Hard to correctly identify representative points and still keep small features and boundaries

https://ohmy.disney.com/wp-content/uploads/sites/25/2013/09/MarlinAndDory.jpg

Introduction

Initialization

Boundary

Subdivision

Refinement

Relevance to Project

Clouds have >200,000 points

Need to preserve features - performing surgery!!

Introduction Initialization Boundary Subdivision Refinement Conclusion

Simplification Steps

Introduction

- 1. Create clusters using *k*-means clustering algorithm
- 2. Check original boundary integrity

Initialization

- 3. Partition clusters into subclusters recursively
- 4. Refine clusters to balance density distribution of points

Boundary

Subdivision

Refinement

General K-Means Clustering

By I, Weston.pace, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2463085

Introduction

Initialization

Boundary

Subdivision

Refinement

Cluster Initialization Algorithm

Build a k-d tree using the N input points in R3

For i = 1 to N do

If Pi is non-marked, search the fixed radius neighbors of Pi, [fixed radius specified by user]

Mark those fixed radius neighbors

End if

End for

Select non-marked points as initial cluster centroids

Introduction

Initialization

Boundary

Subdivision

Cluster Initialization Example

Introduction

Initialization

Boundary

Subdivision

Refinement

Preserve Boundary Integrity

Possible for centroids to be far from actual boundary

Fixing Boundary Clusters

Split boundary clusters that have centroids far from true boundary

Two new centroids: the original, and a point furthest from centroids of neighboring clusters

Introduction Initialization Boundary Subdivision Refinement Conclusion

Picking Clusters to Subdivide

Use max normal vector deviation

Least square plane-fitting to find normal vectors during pre-processing

http://www.physics.brocku.ca/PPLATO/h-flap/phys3_1f_13.png

http://mathwiki.ucdavis.edu/@api/deki/files/71/line_1.jpg

Creating Subclusters

If max normal deviation of a cluster is higher than threshold

Pick the two points with the highest normal deviations as new centroids for two subclusters

Use same *k*-means algorithm to reassign points to new subclusters

Recursively repeat

End if

Introduction > Initialization

Boundary

Subdivision

Refinement

Subcluster Example

Cluster Refinement

Areas of surface change have way more subclusters

Refinement Algorithm

Summary:

Initial clusters should have <4 subclusters

Subcluster centroids should not be close to each other

Ignore initial clusters with few subclusters

- 1. If $Dep_{Ci} > 2$, where Dep_{Ci} is the depth value of the initial cluster c_i .
- 2. Sort the sub-clusters in descending order according to their weights.
- 3. If $d(subc_j, c_j) < \delta DT$ /// in our implementation $\delta = 1/3$.
- 4. Remove the sub-cluster *subc*_j.
- 5. End if.
- 6. If $W_{subc_j} == W_{subc_1}$, $j \in [2, N]$, where N is the number of the sub-clusters.
- 7. Push $subc_j$ into the queue **Q**.
- 8. End if.
- 9. Iteratively compute $d(subc_j, subc_k), j \in [1, \mathbf{Q}.size()], k \in [1, \mathbf{Q}.size()], j \neq k$.
- 10. If $Maximum(d(subc_j, subc_k)) > \delta DT$
- 11. Preserve $subc_j$ and $subc_k$. ///Keep two sub-clusters.
- 12. If $d(subc_j, subc_l) > \delta DT \&\& d(subc_k, subc_l) > \delta DT$
- 13. Preserve $subc_l$. /// $l \in [1, \mathbf{Q}.size()]$
- 14. End if. // Keep another important sub-cluster.
- 15. If $d(subc_j, subc_m) > \delta DT \&\& d(subc_k, subc_m) > \delta DT$
- 16. Preserve $subc_m$. /// $m \in [\mathbf{Q}.size(), N]$
- 17. End if. // Keep a sub-cluster in the flat area.
- 18. Else
- 19. Preserve *subc*₁
- 20. End if.
- 21. End if.

Introduction

Initialization

Boundary

Subdivision

Refinement

Results

Impressive compression

Dragon: 7.6% (435,545 to 32,925)

Bunny: 12.8% (34,834 to 6,500)

Introduction > Initi

Initialization

Boundary > Subdivision

Refinement

Results Comparison

Error measured as Euclidian distance between a sampled point and its projection on simplified surface

Analysis

Impressive feature integrity and data compression

Deals very poorly with noisy data (because it uses max normal deviation)

Not suitable for our project

Sources

Shi, Bao-Quan, Jin Liang, and Qing Liu. "Adaptive Simplification of Point Cloud Using Kk-means Clustering." Computer-Aided Design 43.8 (2011): 910-22. Science Direct. Computer-Aided Design, 9 Apr. 2011. Web. 21 Apr. 2016.

https://en.wikipedia.org/wiki/K-means_clustering

Questions?

Introduction > Initialization

Boundary

Subdivision

Refinement