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Paper Introduction
Problem: 3D clouds can be extremely dense

● Large storage space
● Long post-processing times

Solution: Remove unnecessary points

● Hard to correctly identify
representative points and still keep
small features and boundaries

Introduction
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Relevance to Project
Clouds have >200,000 points

Need to preserve features - performing surgery!!

Introduction

http://pointclouds.org/blog/_images/sub2_front.png http://fundza.com/rman_helper/basics2/pyfig1.png
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Simplification Steps
1. Create clusters using k-means clustering algorithm
2. Check original boundary integrity
3. Partition clusters into subclusters recursively
4. Refine clusters to balance density distribution of points

Introduction
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General K-Means Clustering

By I, Weston.pace, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2463085

Select initial centroids Partition points Move centroids Partition points again

Initialization
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Cluster Initialization Algorithm
Build a k–d tree using the N input points in R3

For i = 1 to N do

If Pi is non-marked, search the fixed radius neighbors of Pi, [fixed radius specified by user]

Mark those fixed radius neighbors

End if

End for

Select non-marked points as initial cluster centroids

Initialization
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Cluster Initialization Example

Initialization
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Preserve Boundary Integrity
Possible for centroids to be far from actual boundary

Boundary
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Fixing Boundary Clusters
Split boundary clusters that have centroids far from true boundary

Two new centroids: the original, and a point furthest from centroids of neighboring 
clusters

Boundary
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Picking Clusters to Subdivide
Use max normal vector deviation

Least square plane-fitting to find normal vectors during pre-processing

Subdivision

http://www.physics.brocku.ca/PPLATO/h-flap/phys3_1f_13.png http://mathwiki.ucdavis.edu/@api/deki/files/71/line_1.jpg
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Creating Subclusters
If max normal deviation of a cluster is higher than threshold

Pick the two points with the highest normal deviations as new centroids for 
two subclusters

Use same k-means algorithm to reassign points to new subclusters

Recursively repeat

End if

Subdivision
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Subcluster Example

Subdivision
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Cluster Refinement
Areas of surface change have way more subclusters

Refinement
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Refinement Algorithm
Summary:

Initial clusters should have <4 
subclusters

Subcluster centroids should not be 
close to each other

Ignore initial clusters with few 
subclusters

Refinement
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Results
Impressive compression

Dragon: 7.6% (435,545 to 32,925)

Bunny: 12.8% (34,834 to 6,500)

Conclusion
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Results Comparison
Error measured as Euclidian distance between a sampled point and its projection 
on simplified surface

Conclusion

k-means 3D Grid Method Curvature-Aware 
Method

MLS-based 
Method
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Analysis
Impressive feature integrity and data compression

Deals very poorly with noisy data (because it uses max normal deviation)

Not suitable for our project

Conclusion
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Questions?
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