Eye-in-Hand Range Image Registration for Surgical Robot

Group 9 Zach Sabin and Joseph Min

Mentors: Russ Taylor, Yunus Sevimli, Bernhard Fuerst

Project Mission

The goal of the project is to mount a range image camera (similar to the Kinect) onto the REMS robot to make setting up the robot and surgeries easier, quicker, and more accurate.

Background

The Robotic ENT Microsurgery System (REMS) robot is a surgical robot that uses minimally invasive techniques by utilizing the body's natural openings to perform head and neck surgery. Currently, the surgeon must manually move and align the robot in preparation for surgery.

The range image camera from Intel provides image and depth data, which we will parse, using the company's SDK, into point-cloud data.

Deliverables

Minimum: Register between pre-operative model and camera point cloud

Expected: Test registration accuracy on a phantom with a CT image Provide some type of guidance to robot operator AX = XB calibration to get camera position relative to robot

Maximum: Find ideal starting pose for robot and assist in initial setup or Track robot motions using camera throughout operation or Deformable registration using statistical atlas

Technical Approach: Overview

Technical Approach: Control Unit

Technical Approach: Accuracy Validation

To validate accuracy we will use fiducial points from the pre-operative model (such as the tip of the nose or stickers/markers) and evaluate if it aligns with point cloud data.

This evaluation could be done by moving the robot with a dummy tool until it tells us we are allegedly at the spot.

Technical Risks and Alternatives

Extreme range-image camera noise

Try different camera models

Unaccounted physical features on patient (such as neck brace, etc.)

Robust outlier algorithm for point cloud

No access to CT scans

Manually construct model

Dependencies

Intel RealSense Camera	Bernhard Fuerst	Completed
Camera to Robot Mount	Yunus Sevimli	Incomplete (2/22)
Camera SDK	Bernhard Fuerst	Incomplete (2/22)
Access to REMS Robot	Dr. Taylor	Completed
CT Scans for Phantom	Dr. Taylor	Incomplete

Milestones

Task Name	Feb				Mar			Apr				Мау						
	Jan 31	Feb 7	Feb 14	Feb 21	Feb 28	Mar 6	Mar 13	Mar 20	Mar 27	7 Apr 3	Apr 10	Apr 17	Apr 24	May 1	May 8	May 15	May 22	Ма
Minimum Deliverables									Minimum	Deliverables								
Mount Camera to Robot					Mount Came	era to Robot												
Construct Phantom from CT Scans				1		Construct Pl	hantom from	CT Scans										
Perform a Registration				1			Perform a R	Registration										
Spring Break								Spring Break										
Validate Accuracy									Validate A	ccuracy								
Expected Deliverables											Expected De	eliverables						
Implement Guidance/Feedback System											Implement G	Guidance/Fee	dback Syster	n				
Decision on Max Deliverables											Decision on	Max Delivera	bles					
Maximum Deliverables														Maximum De	liverables			
Deformable Registration														Deformable F	Registration			
Patient and Robot Motion Tracking													l l	Patient and F	Robot Motion	Tracking		
Define Ideal Starting Pose														Define Ideal	Starting Pose			

Management Plan

- Weekly Meeting with Mentors: Monday 5:30
- Group Meeting:
 - Wednesday 9-11 am
 - Similar Schedules, so more time added as necessary/available
- Git + Github Private Repo for code control
- Progress tracked on Wiki

Skills / Responsibilities

Both CS majors and strong coders

Zach: Robotics minor, will handle more of interfacing with hardware and other implementation details

Joe: Stronger math background, will handle details concerning algorithms and mathematical approach

Project Readings

- [1] S. Billings, A. Kapoor, M. Keil, B. J. Wood, and E. Boctor, "A hybrid surface/image-based approach to facilitate ultrasound/CT registration", in SPIE Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy, Lake Buena Vista, Florida, Feb 13, 2011. pp. 79680V-1 to 79680V-12.
- [2] S. Billings, E. Boctor, and R. H. Taylor, "Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for Computing Optimal Shape Alignment", *PLOS ONE*, vol. 10- 3, pp. (e0117688) 1-45, 2015. <u>http://journals.plos.org/plosone/article?</u> <u>id=10.1371/journal.pone.0117688</u> doi:10.1371/journal.pone.0117688
- [3] S. Billings and R. Taylor, "Generalized Iterative Most-Likely Oriented Point (G-IMLOP) Registration", *Int. J. Computer Assisted Radiology and Surgery*, vol. 8- 10, pp. 1213-1226, 2015. DOI 10.1007/s11548-015-1221-2
- [4] K. C. Olds, P. Chalasani, P. Pacheco-Lopez, I. Iordachita, L. M. Akst, and R. H. Taylor, "Preliminary Evaluation of a New Microsurgical Robotic System for Head and Neck Surgery", in IEEE Int. Conf on Intelligent Robots and Systems (IROS), Chicago, Sept 14-18, 2014. pp. 1276-1281.
- [5] K. Olds, *Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery,* PhD thesis in Biomedical Engineering, Johns Hopkins University, Baltimore, March 2015.