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Abstract

We created a software package that registers images taken from an
RGB-Depth (RGBD) camera mounted on the REMS robot to a mesh
model generated from a pre-operative Computerized Tomography (CT)
scan.

1 Introduction

Minimally invasive surgeries are almost always preferable to invasive ones. They
allow patients to recover more quickly and have fewer risks of complications after
surgery. However, particularly around the head and the throat, these surgeries
can be extremely difficult. There are many critical structures, and instruments
often need to be removed and reinserted. The tissue in these regions is sensitive,
and it can impair a surgeon’s vision when they look through an endoscope [1].
Using a robot to aid in the surgery can reduce hand tremor, increase precision,
and help the surgeon navigate through the complex anatomy of the head and
the throat.

The REMS robot has been developed in order to achieve those goals. The
robot is designed to aid surgeons with ear, nose, and throat surgeries via coop-
erative control with the surgeon.

The goal of our project was to help the surgeon align the robot to the pa-
tient in a certain orientation. This is useful because it allows the robot to be
positioned in the optimal fashion for a certain surgery. In order to achieve this
we mounted an RGBD camera to the robot’s tool holder. Using this camera
we could then register the patient’s position relative to the camera to a pre-
operative CT scan. A surgeon could then position the robot such that the
transformation is of a certain value that corresponds to the ideal starting posi-
tion.

A secondary goal of our project was to be able to perform a calibration such
that we can determine the transformation between the wrist of the robot and
the camera. This type of calibration is known as a ”Eye in Hand Calibration”.
This calibration also allows for the system to determine the pose of the patient
relative to the base of the robot, which is important in order to optimally
position the robot.
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2 Technical Approach

2.1 Camera

The camera that we mounted onto the REMS robot was an Intel RealSense
camera. This camera computes a depth value for each pixel in its sensor. Using
these depth values one can then compute a point cloud. This point cloud is ex-
tremely high resolution as the camera is a 640x480 resolution, providing around
300,000 points in the point cloud.

2.2 Point Cloud Processing

This level of detail for the point cloud caused our registration algorithm to be
too slow. Additionally the camera is fairly noisy, and such a fine level of detail
is therefore extremely noisy. In order to reduce the size of the point cloud we
downsample the point clouds as they come in from the camera.

We used a K-dimensional Tree (KD Tree) with a fixed leaf size to downsample
this cloud. Using the point cloud, we built a KD tree where every leaf node’s
bounding box had a fixed size (e.g. 1 mm). Once the KD tree was populated
the centroid of every leaf node was placed into the new ”downsampled” cloud.
This method is advantageous for two reasons. The first is that sections of lower
density are not sampled away since each leaf node is included in the sample
cloud, regardless of whether it has 50 points or 1 point within it. The second is
that it filters clouds to comparable resolutions regardless of their original density
since it is based on a fixed measurement rather than a proportion of points.

An additional issue we dealt with the point clouds is that they are taken while
the patient (or phantom) is placed on a table. This results in the table being
included in the point cloud anywhere the camera is not viewing the patient. In
order to remove the table we used the open source Point Cloud Library’s plane
segmentation method.

As the base algorithm for plane segmentation we selected the RANSAC
algorithm. RANSAC is a general algorithm for estimating the parameters of a
model within data by sampling pieces of the data. In this case we were using it
to estimate the parameters of the plane within the overall point cloud. Briefly,
RANSAC works by randomly selecting a certain part of the data. It then
attempts to fit the model parameters (in this case the coefficients of a plane)
to this data. Once it has done this it computes what percentage of the overall
data fits the model parameters that it has just computed. It does this a certain
number of times and then returns the best parameters found, or no parameters
if it could not successfully fit a model to a high enough percentage of points.

2.3 Registration

Once we have a processed point cloud we then attempt to compute the transfor-
mation between the cloud and the reference mesh (from the pre-operative CT
scan). To get this registration, we use the standard ICP algorithm. We will not
discuss ICP in great detail, but it is an algorithm that iteratively approximates
the transformation between two objects and (hopefully) improves on each guess.
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2.4 Calibration

Being able to calibrate the camera such that we know the pose of the camera
relative to the wrist of the robot makes the registration much more useful. In
order to do this we set up a system of equations resembling AX = XB where A
are the differences between poses of the robot and B are the differences between
poses of the calibration object relative to the camera, and then we can solve for
X.

The first step to do this is to set up the AX = XB equation. This is done
by taking data from the camera at a sequence of poses. At each of these poses
we also record the pose of the robot (stored as a position and a quaternion).

The system of equations is then

Fco,kF
−1
co,0Fw = FwFbw,kF

−1
bw,0

Where Fco is the pose of the calibration object relative to the camera and
Fbw is the pose of the robot wrist relative to the robot base.

We then find the best solution for this system of equations. The method for
this is out of the scope of this paper, but it essentially constructs a minimiza-
tion problem using the quaternions of the poses, then solves the minimization
problem in order to find the best rotation for Fw. This can be seen in more
depth in [2].

After solving for the rotation matrix of Fw we then solve for the translational
section using a simple least squares method. Again this technique can be seen
in [2]

We found the poses of the calibration object relative to the camera by using
a large, solid angle bracket as calibration object. By taking RGBD images of
this object and then segmenting the two planes of the object and the plane of
the table we can compute a centroid and a set of axes for each image. This
allows us to generate a pose.

3 Results

3.1 Point Cloud Processing

The point cloud processing has been largely successful at downsampling and
the removal of background planes. The downsampling can easily and quickly
return a point cloud sampled to any degree of simplification while keeping the
overall integrity of the point cloud. Shown below is a 206,201 point point cloud
first downsampled with a leaf size of 15 millimeters to a point cloud with 24,117
points. The overall integrity is easily observed. The plane behind the desired
cloud is then segmented and removed using a tolerance of 20 millimeters, leaving
5,634 points to use for registration. The final product still contains some residual
points from the background plane outside the tolerance level and some noise
above the point cloud.
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Figure 1: A point cloud gets processed

3.2 Registration

Figure 2: A point cloud registered to a
mesh

The ICP registration algorithm re-
turned an average error of 15 millime-
ters from each point in the point cloud
to their respective surface triangles on
the mesh. One such example of these
results can be seen in the figure to
the right where ICP was unable to tilt
the point cloud (in blue) backwards to
correctly align the point cloud to the
mesh (in red).

The performance of the ICP al-
gorithm is highly variable. Often it
completely flips the point cloud rela-
tive to the mesh, registering the shoulders of the cloud to the head of the mesh.
Of note though is that it successfully places the point cloud onto or within the
mesh.

3.3 Calibration

We were able to rigorously test our AX = XB given various test data, and
we verified its correctness; however, we were unable to successfully integrate
calibration into our product at this time. As it is currently, we use a perpendic-
ularly angled calibration object and attempt to use plane segmentation to find
three perpendicular planes that define the object’s coordinate system. Given
the definition of this coordinate system with multiple frames of the calibration
object, we should be able to find a frame transformation from the coordinate
system of the camera to that of the calibration object. However, we have thus
far been unable to output the correct frame transformation.

4 Discussion

Moving forward, things we would like to improve on include outlier rejection
during point cloud processing, improving the registration algorithm, and imple-
menting our calibration step.
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4.1 Point Cloud Processing

A large portion of error also came from the camera itself. Its depth imaging
is actually very sensitive and often produced large amounts of noise due to
thing such as small smudges on the lens or (possibly) other sources of infrared
light. We would like our algorithms to be able to be robust to the point that
registration and calibration would both work even with noisy data sets such as
those produced by a overly sensitive camera. Methods to deal with this would
possibly include large outlier rejection during pre-processing of the point cloud,
and more fine tuned down sampling of point clouds and meshes.

4.2 Registration

We suspect that the high error returned by the ICP registration algorithm is
largely due to the fact that ICP has trouble dealing with incomplete point clouds
(the camera cannot return what it can’t see, such as the backside of the patient’s
head), and that it often gets stuck at local minimums. The incomplete point
cloud means that the point cloud has a higher possibility of fitting to incorrect
portions of the mesh, increasing the probability for misalignment. However, if
the misalignment has a locally minimum error, ICP is likely to label it as the
correct registration. Another possible source of error comes from the scaling of
the camera. The camera depth is scaled in micrometers and using the depth
one can compute the ”real world” x and y coordinates using the depth as the
z. However the accuracy of these depth units is questionable as we often saw
point clouds that appeared flattened or elongated.

For our registration algorithm, we would like to implement a way to au-
tomatically find the necessary scaling factor between the point cloud and the
mesh. Possible ways to do this include using multiple guesses when running
ICP (effectively running ICP multiple times on differently scaled clouds) and
choosing the scale factor that minimizes the error, and finding the distance be-
tween two known points on both the cloud and the mesh to calculate a scale
factor. The prior would be significantly slower but would require no additional
information, whereas the latter would be more efficient but would require more
pre-processing at the very least. Another improvement on the registration al-
gorithm would be to develop a method to have a better initial guess (a starting
frame transformation) to reduce computation time and final error.

4.3 Calibration

For the calibration, there are several things to improve on, the main concern
being able to output a valid frame transformation given a series of frames of a
calibration object, and integrating this code with an automated way of getting
each calibration image.

5 Management Summary

5.1 Who Did What

Joe got the point cloud from the Real Sense camera on Unix, used PCL to
downsample point cloud and remove the plane, and worked on creating the
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poses of the calibration object from point clouds.
Zach used Seth Billing’s code, wrote the Hand Eye Registration and Cal-

ibration classes, created the software package and class structure, wrote the
Interface class, wrote the interface for the Intel camera on Window, and set up
the environment for the software package.

5.2 Planned vs. Accomplished

Our original plan was to get registration working, implement calibration, and
potentially add some kind of visualization or guidance for the surgeon so that
they could properly align the robot. We failed to accomplish these goals. We
created a package that has the capability to do all of these things. However,
our registration is not successful as it frequently fails to properly align the point
cloud with the mesh. We did not fully implement calibration, as the processing
step where we compute the poses from the point clouds of the calibration image
is not functionally implemented.

5.3 Future Work

The first thing we would like to do is experiment with different registration al-
gorithms. ICP, Generalized ICP, Feature Based Registrations, and IMLP are all
possible options for this algorithm. We would also like to successfully implement
calibration. The remaining step is to successfully compute the poses from the
point clouds, which is currently not working. The third piece of work would be
to improve the user interface. Implementing a visualization of how to position
the robot would be fairly straightforward once registration and calibration are
functioning.

5.4 What We Learned

5.4.1 Software Engineering

Our number one takeaway from this project was that setting up an environ-
ment and getting dependencies can be a massive undertaking. Neither of us
were experienced setting up complicated C++ (or other languages) develop-
ment environments that depended on multiple SDKs and libraries and this took
up a much greater proportion of time and effort than it should have and pre-
vented us from successfully achieving our deliverables as we would have wanted
to. However we have learned a great deal about CMake and, in general, how
to set up complex C++ build systems with lots of external dependencies. It’s
unfortunate that it took us such a great deal of time and effort that could have
been spent actually working on the problem.

5.4.2 Technical

In terms of technical knowledge we also learned a great deal. We learned more
about different registration algorithms such as ICP, IMLP, and G-ICP and their
strengths and weaknesses. We also learned a great deal about Eye in Hand cal-
ibration and the math behind it, since we implemented the algorithm (although
could not successfully integrate the algorithm with the camera’s point cloud
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images. We also learned about point cloud processing and modeling by down-
sampling the clouds from the camera and applying the RANSAC algorithm to
remove the plane of the table from the cloud.
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