
Joseph	Min	
Computer	Integrated	Surgery	II	
Seminar	Presentation	
21	April,	2016	
	

“Adaptive	simplification	of	point	cloud	using	k-means	clustering”	
Authors:	Bao-Quan	Shi,	Jin	Liang,	Qing	Liu	

	
Introduction	
	 Our	project	uses	an	image-range	camera	to	generate	a	point	cloud,	which	we	register	to	
a	surface	mesh	created	from	CT	scans.	We	then	use	this	registration	and	an	AX=XB	calibration	
for	the	Robotic	Ear	nose	and	throat	Microsurgery	System	(REMS)	robot	to	align	the	robot	in	
preparation	for	surgery	to	allow	for	a	safer,	more	accurate	procedure.	However,	our	generated	
point	clouds	are	generally	pretty	large	(>200,000	points),	which	has	high	space	and	processing	
costs	so	a	big	struggle	has	been	to	simplify	our	point	clouds.	The	paper	that	is	reviewed	here	
outlines	a	technique	to	take	a	dense	point	cloud	and	simplify	it	using	a	technique	that	preserves	
the	integrity	of	the	point	cloud	itself,	which	was	one	solution	to	our	problem	that	we	examined.	
	
Summary	
	 Though	there	have	been	many	algorithms	put	forth	previously	to	reduce	the	number	of	
points	in	a	point	cloud,	they	each	had	their	limitations.	The	simplification	algorithm	created	by	
Shi	et	al.	is	meant	to	address	three	of	those	major	concerns:	to	efficiently	and	effectively	
identify	as	many	redundant	points	as	possible,	to	keep	the	boundary	integrity	of	the	point	cloud	
as	intact	as	possible,	and	to	balance	the	resulting	point	cloud	as	much	as	possible.	The	paper	
aims	to	quell	these	concerns	by	applying	the	k-means	clustering	technique	to	find	average	
points	(also	known	as	means	or	centroids)	to	be	representative	of	a	set	of	similar	points	
(reducing	redundant	points),	using	boundary	detection	to	place	means	near	the	true	boundary	
of	the		
	
Technical	Approach	
K-means	clustering	

K-means	clustering	is	a	popular	method	for	cluster	analysis,	and	it	aims	to	split	n	
observations	(or	data	points)	into	k	means,	where	each	of	the	n	data	points	belongs	to	the	
cluster	of	the	mean	that	it	is	closest	to.	It	does	so	by	initializing	k	means	(often	randomly,	but	we	
will	see	soon	how	the	initialization	step	happens	for	algorithm	in	the	paper),	and	associating	
every	point	with	the	original	means.	Then,	a	new	mean	is	calculated	by	taking	the	average	
feature	(in	this	case,	Euclidean	distance)	of	the	points	in	each	cluster.	The	cluster	partitions	are	
recalculated	from	these	new	means,	and	the	process	repeats	until	convergence.	Here	is	the	
algorithm	in	action	for	a	2D	set	of	points:		

For	a	3D	set	of	points,	the	general	process	is	the	same,	but	uses	3D	clusters	instead.	
	 	

In	this	paper,	the	initialization	step	is	not	random,	but	is	instead	determined	by	the	
following	procedure:	

This	algorithm	basically	takes	the	first	point	as	the	mean	(referred	to	above	as	a	centroid)	of	the	
first	cluster,	takes	all	the	points	within	some	user-defined	Euclidian	distance	(DT)	in	its	cluster,	
and	marks	them	as	ineligible	to	also	be	means	of	a	cluster.	It	then	iterates	until	it	finds	an	
unmarked	point,	makes	this	the	mean	of	the	next	cluster,	and	repeats	the	process	until	every	
point	is	either	the	mean	of	an	initial	cluster	or	is	a	member	of	a	cluster.	The	number	of	initial	
means	is	our	k.	Because	of	the	use	of	that	user-defined	Euclidian	distance,	the	centroids	are,	at	
the	end	of	this	step,	uniformly	distributed	(all	roughly	DT	from	each	other).	
	 Note	that	the	use	of	k-means	clustering	in	this	paper	is	limited	to	the	initialization	step	–	
the	subsequent	convergence	steps	are	skipped.	
	
Boundary	Detection	and	Preservation	

Because	of	how	the	initial	clusters	
are	chosen,	it	is	easy	to	see	how	it	would	be	
possible	that	some	centroids	would	be	far	
from	the	true	boundary	of	the	original	
object.	An	example	of	this	is	shown	to	the	
right,	where	the	centroids	(the	white	dots	in	
the	middle	of	the	colored	clusters)	of	a	few	
clusters	of	a	rectangular	object	are	distant	
from	the	edge	of	the	original	object.	
	 To	consistently	determine	if	a	centroid	is	too	far	from	a	true	boundary,	a	boundary	
detection	algorithm	is	defined.	First,	we	need	to	find	the	clusters	on	the	boundary	of	the	object.	

This	is	done	by	counting	the	number	of	
centroids	within	√(3)*D	away	from	a	given	
centroid,	and	if	that	number	is	fewer	than	
6,	then	the	given	centroid	must	be	that	of	a	
boundary	cluster.	This	is	made	possible	due	
to	the	fact	that	the	initialization	step	
generates	roughly	evenly	spaced	centroids	
as	noted	before.	A	2D	example	is	shown	to	
the	left.	

Now	that	we	have	our	boundary	clusters,	we	have	to	determine	if	their	centroids	are	close	
enough	to	the	boundary	to	preserve	boundary	integrity.	They	do	so	by	utilizing	an	algorithm	
that	essentially	finds	the	point	in	a	boundary	cluster	with	the	furthest	average	distance	from	the	
centroids	of	neighboring	clusters	(the	ones	within	that	√3*D	radius),	and	determines	if	that	
average	distance	is	above	some	user-defined	threshold.	If	so,	that	particular	boundary	cluster	
has	a	centroid	that	does	not	preserve	boundary	integrity.	

	 	
To	the	left	is	a	2D	example	of	such	a	situation	
in	which	ci	represents	the	centroid	of	the	
current	cluster,	c1-c5	represent	the	centroids	
of	neighboring	clusters,	and	mj	represents	any	
point	in	the	current	cluster.	Every	Dc	is	the	
Euclidean	distance	from	ci	to	the	centroids	of	
neighboring	clusters,	and	every	Dm	is	the	
Euclidean	distance	from	mj	to	the	centroids	of	
neighboring	clusters.	We	examine	every	mj	in	
the	current	cluster	and	find	the	point	with	the	
highest	average	distance	from	the	centroids	
of	the	neighboring	clusters.	That	is,	we	define	

DM	as	𝐷! = !
!

𝐷!!
!!! ,	and	proceed	to	find	max(DM).	We	then	compare	this	to	DC	which	is	

defined	as	𝐷! = !
!

𝐷!!
!!! .	If	max(DM)	>	αDc	for	a	user-defined	α,	then	the	centroid	of	the	

current	boundary	cluster	is	deemed	to	be	too	far	from	the	true	boundary.	
To	correct	this	issue,	the	boundary	cluster	is	split	into	two	subclusters	where	one	has	a	

centroid	that	is	the	same	as	the	original	cluster	and	the	other	has	a	centroid	that	is	the	point	
that	corresponded	with	the	max(DM).	The	members	of	the	original	cluster	are	sorted	into	the	
two	subclusters	using	the	standard	k-means	process	as	described	previously.	
	
Cluster	Subdivision	
	 We	now	have	a	cloud	that	has	roughly	evenly	distributed	points	(where	each	point	is	a	
centroid	of	each	cluster)	but	we	have	lost	a	lot	of	detail	because	of	this.	It	is	clear	to	see	that	
places	with	higher	detail	or	change	in	features	would	need	more	points	to	represent	said	detail.	
To	create	more	points	to	represent	these	features,	the	paper	introduces	cluster	subdivision,	
which	takes	clusters	that	need	higher	resolution	and	recursively	splits	the	clusters	into	smaller	
clusters.	
	 In	order	to	identify	the	clusters	that	need	higher	resolution,	the	paper	takes	the	original	
cloud	data	set	and	estimates	the	surface	normal	of	each	point	by	“the	fitting	plane	obtained	by	
applying	a	least	squares	method	to	the	k	nearest	neighbors	of	the	point	in	the	point	cloud”.	
Then,	for	each	cluster,	it	compares	the	normal	vector	deviations	of	every	point	to	every	other	
point,	and	finds	the	maximum	normal	deviation.	If	this	maximum	normal	deviation	is	above	a	
user-defined	threshold,	the	current	cluster	is	divided	into	two	subclusters	whose	centroids	are	
the	two	points	with	the	two	highest	vector	normal	deviations,	and	the	points	of	the	original	
cluster	are	placed	into	subclusters	appropriately.	Below	is	an	image	depicting	how	more	
curvature	leads	to	a	higher	number	of	smaller	clusters.	

Cluster	Refinement	
	 Now	we	have	a	relatively	representative	cloud,	but	it	is	very	unbalanced	–	areas	of	high	
detail	have	the	necessary	definition	now,	but	might	be	too	densely	outlined	as	seen	in	the	green	
pulley	below	on	the	left.	So,	the	paper	proposes	a	method	to	refine	and	balance	the	distribution	
of	clusters.

	
It	is	essentially	as	follows:	because	the	clusters	are	split	into	two	subclusters	with	every	
subdivision,	the	procedure	establishes	a	binary	tree	structure	of	clusters.	Thus,	importance	of	a	
particular	subcluster	could	be	defined	as	a	function	of	its	depth	in	such	a	tree	(distance	below	an	
initial	cluster)	and	the	number	of	points	in	that	particular	cluster.	The	importance	weight	is	
defined	in	the	paper	as	the	quotient	of	a	particular	subcluster’s	depth	and	its	number	of	
member	points:	𝑊! = 𝐷𝑒𝑝! 𝑛𝐶𝑜𝑢𝑛𝑡! 	These	weights	are	then	analyzed	by	the	refinement	
algorithm	below,	and	subclusters	deemed	as	unnecessary	are	eliminated.	
	

Results	
	 Overall,	the	results	of	this	algorithm	are	pretty	impressive.	As	seen	in	the	table	below,	it	
can	drastically	reduce	the	number	of	points	in	a	data	set	(in	some	cases	to	a	number	that	was	
less	than	7%	of	the	original	number	of	points),	and	incredibly	quickly,	even	for	the	more	
complicated	shapes.	

	
The	error	comparison	to	other	popular	algorithms	was	also	pretty	impressive.	It	seems	as	
though	the	feature	retention	was	much	higher	for	this	algorithm,	at	least	in	the	example	the	
paper	outlines	as	seen	below.	From	left	to	right,	the	results	are	for	the	paper’s	algorithm,	a	3D	
Grid	method,	a	Curvature-Aware	method,	and	a	moving	least	squares	method.	As	you	can	see	
below,	the	far	left	has	the	most	green	and	the	least	amount	of	error.	

	
	
	
Analysis	
	 The	paper	outlines	a	relatively	impressive	algorithm	and	does	so	in	an	easily	
understandable	way.	None	of	the	math	was	really	that	complicated,	and	the	pseudocode	was	
also	well	written.	There	was	also	error	presentation	for	a	couple	distinct	examples	for	varying	
thresholds	of	refinement,	which	was	nice.	However,	some	of	the	paper’s	shortcomings	come	
from	its	overall	results	presentation	and	comparisons,	and	the	lack	of	comprehensive	error	
analysis	and	comparisons.	It	is	obviously	nice	to	see	visual	results	and	even	a	table	of	
simplifications	and	their	associated	times,	but	there	was	never	a	succint,	quantifiable	way	to	
judge	the	error	of	the	results	of	the	paper	other	than	the	last	comparison	with	the	bowl.	This	
comparison	also	only	compared	error	–	had	there	been	a	table	of	number	of	points	they	were	
reduced	to	and	how	long	it	took,	that	would	have	been	extremely	useful	and	interesting	as	well.	
	 The	algorithm	outlined	in	this	paper	is	also	not	very	useful	for	our	project	because	it	is	
very	sensitive	to	noise	due	to	the	fact	that	it	uses	the	maximum	normal	vector	deviation	as	a	
parameter	for	subdivision	(and	noisy	outliers	are	clearly	likely	to	have	high	normal	vector	
deviations).	The	data	we	receive	from	our	image-range	camera	is	not	as	clean	as	would	be	a	3D	
scan	(which	I	think	is	what	this	paper	is	more	targeted	towards),	and	would	likely	cause	high	
error	after	simplification.	
	 	

Works	Cited	
Shi,	Bao-Quan,	Jin	Liang,	and	Qing	Liu.	"Adaptive	Simplification	of	Point	Cloud	Using	Kk-

means	Clustering."	Computer-Aided	Design	43.8	(2011):	910-22.	Science	Direct.	Computer-Aided	
Design,	9	Apr.	2011.	Web.	21	Apr.	2016.	

Pace,	Winston.	Digital	image.	Wikipedia.	Wikimedia	Foundation,	26	July	2007.	Web.	21	
Apr.	2016.	

