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Summary of Mathematical Approach 

IMLP is an algorithm based on the same concepts as ICP. The goal is to “co-align multiple 

representations of a shape or environment” by calculating the transformation that aligns the 

representations. In ICP and IMLP, this is done with an iterative algorithm that first attempts to calculate 

the correspondences between points in the two representations or, if one of the representations is a 

mesh, calculate the correspondence between points in the cloud and points on the surface of the mesh. 

Once the algorithm has these correspondences it then uses them to calculate a transformation that 

aligns corresponding points as closely as possible using some distance measurement defined by the 

algorithm. ICP generally does this by creating correspondences between points in the source shape and 

the closest point to them in the target shape. Once it has these correspondences it then calculates a 

transformation such that the transformed source shape minimizes an error function, usually simply a 

sum of distances between corresponding points squared. This algorithm can be seen below (taken from 

Billings’ paper).  

 

In his paper Billings proposes an alternative to ICP that he calls IMLP. The idea behind IMLP is 

that each point has anisotropic error associated with its position. He assumes that these errors are 

independent, zero-mean, multivariate Gaussians and thus calculates the likelihood of two points 

corresponding as being the equation below (Equation 3 from Billings’ Paper).  

 

In this equation, Mx and My are the covariance matrices for the error of the x and y points on the 

source and target shape respectively. Billings then uses this equation instead of simply the Euclidean 



distance (as is done in ICP) to find the correspondences between points during the correspondence 

phase of his algorithm. In other words, rather than match points with the point closest to them on the 

target shape, he matches them with the point with the highest match likelihood. This equation forms 

the basis of IMLP, which can be seen in the below algorithm (from Billings’ paper).  

 

While there is not enough space in this review to explore too deeply the math that Billings uses, 

this paper will quickly review the steps the algorithm takes before reviewing the separate sections of the 

paper.  

In the inputs to the algorithm there are two covariance matrices for each point. The surface 

model covariances are directed along the surface of the target shape to “increase the noise-model 

variance in the surface-parallel directions” to encourage error to be along the surface of the target 

shape rather than normal to it. This is separated from the standard covariance as Billings claims that it 

was found to improve outlier rejection.  



The match uncertainty term in the inputs to the algorithm is an isotropic variance that is added 

to the noise model and represents the “amount of misalignment between the source and target 

shapes.” This is so that in the early stages of the algorithm, when the shapes are extremely misaligned, 

the covariance matrices are not supposed by the algorithm to account for the misalignment. This term is 

calculated at each step of the algorithm using the below equation (Equation 4 from Billings’ paper).  

 

 Outlier detection in IMLP is done using the Mahalanobis match distance, which defines the 

distance between two points as the number of standard deviations away the two points are along the 

distribution’s principal component axes. This is defined in Equation 5 of Billings’ paper. 

 

 The algorithm sets any points whose distance exceeds the chi-squared threshold given as an 

input to the algorithm as outliers. The algorithm then adds isotropic noise relative to the distance 

between the corresponding points to the outliers’ noise models, thus reducing their influence during the 

registration phase. This can be seen in Equation 7 of Billings’ paper. Billings also points out that one 

could completely remove outliers from the registration phase, and he states that this is preferable in 

cases where the shapes have only partial overlap.  

 

 In order to find the correspondences between points, i.e. find the point on the target shape with 

the highest match likelihood for a point on the source shape, IMLP uses a PD tree. This is similar to a kd 

tree but each node defines a local coordinate system based on the eigenvectors of the covariance 

matrix. This review will not explore too deeply the workings of the PD tree, but Billings’ search algorithm 

can be seen below.  

 

 

 

 

 



 After explaining his use of the PD tree, Billings has a long section of his paper devoted to the 

different methods that one can use to bound the match error of a node (and thus bound the PD tree 

search).  The algorithm has to check at least every point that satisfies the inequality below (Equation 10 

from Billings’ paper).  

 

 He then presents a way to bound the log component of the inequality above, as well as three 

methods of bounding the square Mahalanobis match distance, the left side of the above inequality. This 

review will not explore these bounding methods but they can be found in Billings’ paper.  

 Once Billings has established his method of finding the correspondences, he then discusses how 

to align the source and target shapes. He does this using least squares, similar to ICP, but instead of 

minimizing Euclidean distance he minimizes the total match error as defined in the below equation (19 

from Billings’ paper). However he claims that the Log term in the below equation can be disregarded as 

it is very small compared to the remainder of the equation, so the least squares problem is to minimize 

the square Mahalanobis-distance. He then explores how to solve this using least squares, which this 

review will not discuss. 

 

Evaluation 

Billings paper is a very thorough explanation of his mathematical justifications, algorithmic 

implementations, and experimental results. The Methods section discusses thoroughly why he made the 

choices that he did and that equations that were put into the algorithm. The strengths of this section 

were its thoroughness in exploring every equation and discussing alternatives in some cases. Billings also 

used experimental results to back up some of his choices (e.g. his choice to increase the variance of 

outliers rather than simply not include them altogether) which was a nice way to support his theory. 

However, some of the theoretical background of his equations was not completely explored which can 

leave the reader struggling to understand how Billings reached a certain equation. This may be the fault 

of the reader for not having a strong enough theoretical background but a couple extra sentences about 

how he reached certain results would make the paper far more readable. For example explaining the 

terms in his multivariate Gaussian distribution (i.e. transforming the covariance matrices into the target 

space and then adding them to calculate the net distribution) would be a nice touch.  

His results and conclusion sections are also very thorough. He explains clearly each experiment 

and runs experiments on eight separate cases in which one might wish to run ICP or IMLP. He also tests 

the results of not just basic ICP and IMLP, but also of other “state of the art” algorithms such as robust 

ICP, Coherent Point Drift, and generalized ICP. He also attempts different variations of his algorithm, by 

switching most likely point to the closest point in Mahalanobis-distance and simply to closest point. 

Standard IMLP still outperforms almost all variations in terms of target registration error. However in 



some cases, particularly those with high outlier rates, IMLP has significantly higher rates of registration 

failure (defined as a greater than 10 mm difference after registration) than other algorithms. Billings 

puts these results into difficult to read tables, whereas the target registration results are in graphs. It 

would have made for more readable results if he had put all results into graphical formats. He also does 

not discuss whether these registration failures are positive or negative, and it is not clear that they are 

negative (is it better to fail subtly or loudly?).  

Overall his paper was thorough and established a strong theoretical backing and experimental 

results for his algorithm. It was also nice that he provided a fully coded implementation for the reader to 

look at.  

Conclusion 

IMLP is a strong algorithm and certainly appears to achieve significantly better results than 

standard ICP. While it does have a longer runtime this is not always important, especially as it is much 

more accurate in many cases. For our project, especially when we are calibrating the camera on the 

REMS robot, speed is not critical and there may be many outliers and lots of noise. Since IMLP handles 

outliers and noise with greater accuracy than ICP, we will certainly at least experiment with using it in 

our implementation.  


