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Critical	Review:	Mesh	Simplification	and	Measures	of	Error	

Introduction	

Project	Review	
		

Our	project	is	“Validating	and	Improving	Single-Stage	Cranioplasty	Prosthetics	with	Ground	Truth	
Models”.	The	aim	of	this	project	is	to	use	patient-specific	ground	truth	models	of	cranioplasty	defects	to	
determine	accuracy,	evaluate	robustness,	and	improve	upon	patient	registration	of	a	process	that	segments	
the	defect	wall	from	a	3D	scanned	point	cloud	of	the	defect.	If	successful,	this	project	will	pave	the	way	for	
accurate	single-stage	cranioplasty	operations	that	will	reduce	surgical	time	and	the	risk	of	infection	due	to	an	
ill-fitting	cranioplasty	implant.	

Paper	Selection	
The	following	are	the	two	papers	I	reviewed:	
	
Hoppe,	Hugues,	et	al.	"Mesh	optimization."	Proceedings	of	the	20th	annual	conference	on	Computer	

graphics	and	interactive	techniques.	ACM,	1993.	
	
Aspert,	Nicolas,	Diego	Santa	Cruz,	and	Touradj	Ebrahimi.	"MESH:	measuring	errors	between	surfaces	

using	the	Hausdorff	distance."	ICME	(1).	2002.	
	

	 The	first	paper,	Hoppe	et	al.,	discusses	a	mesh	optimization	method	that	has	applications	in	mesh	
simplification	and	segmentation.	The	second	paper	is	shorter	and	discusses	a	robust	method	for	gauging	
surface-to-surface	error.	

Significance	
The	Hoppe	et	al.	paper	could	provide	a	method	for	addressing	some	of	the	problems	we	face	with	the	

current	method	of	finding	the	defect:	handling	the	dense	3D	point	cloud	obtained	from	the	scan	of	the	defect.	
There	are	thousands	of	points	in	a	single	defect	scan,	which	slows	computation	time,	and	the	mesh	
representation	of	these	points	tends	to	be	noisy,	with	surface	normal	pointing	in	very	disparate	directions	
even	within	a	localized	area.	It	would	be	ideal	to	work	with	a	simplified	representation	of	this	mesh.	Given	the	
point	cloud	density,	it	is	reasonable	to	claim	that	we	can	significantly	reduce	the	number	points	without	
having	a	large	effect	on	the	overall	accuracy	of	the	mesh.	This	would	allow	for	faster	manipulation	of	the	
mesh	and	also	reduce	the	noisy	variation	of	surface	normals	in	dense	areas	(this	is	important	for	the	method	
used	to	identify	the	parts	of	the	mesh	that	are	the	defect	wall).	In	addition,	the	segmentation	applications	of	
this	approach	may	provide	a	more	robust	method	for	identifying	the	defect	wall.	

However,	it	is	important	to	remember	that	we	ultimately	need	to	be	able	to	measure	the	accuracy	of	
our	final	mesh	in	order	to	properly	quantify	and	report	our	findings.	Having	a	robust	method	to	do	this,	such	
as	discussed	in	Aspert	et	al.,	would	greatly	increase	the	confidence	we	could	have	in	our	findings	and	also	
render	them	more	communicable	as	we	would	have	a	standard	measure	of	surface-to-surface	error	to	report.	

Next,	I	discuss	the	mathematical	and	algorithmic	approaches	described	in	the	paper	as	well	as	their	
results	and	my	assessment.	

Mesh	Simplification	–	Hoppe	et	al.	

Background	
Throughout	the	paper,	the	Hoppe	et	al.	represents	the	mesh	as	simplical	complexes	and	vertices	(M	=	

(K,	V)	where	M	is	the	mesh,	K	is	the	simplical	complexes,	and	V	is	the	vertices).	Simplical	complexes	define	the	
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surface	of	a	mesh	and	are	the	space	of	unions	between	points,	lines,	and	faces.	Points	are	0-simplices	(
),	lines	are	1-simplices	( ),	and	faces	are	2-simplices	( ).	We	are	now	

ready	to	begin	discussion	of	the	methods	in	Hoppe	et	al.	

Mathematical	Approach	
	 To	simplify	a	mesh,	an	energy	function	was	minimized	using	legal	moves	over	the	mesh	space.	This	
was	iterated	until	convergence.	To	reduce	computation	time,	localization	was	used	so	that	the	energy	
function	would	not	have	to	be	evaluated	of	the	whole	mesh.	

	 Energy	Function	
To	simplify	a	mesh,	Hoppe	et	al.	minimizes	the	following	energy	function:	

E(K,	V)	=	Edist(K,	V)	+	Erep(K)	+	Espring(K,	V) 
Where	Edist	is	the	sum	of	all	squared	distances	from	the	points	of	the	new	mesh	to	the	surface	of	the	old	mesh,	

.	Erep	is	the	number	of	0-simplices,	or	vertices,	in	the	new	mesh	with	a	weight	of	crep,	 	
(where	m	is	the	number	of	vertices	in	the	resulting	mesh).	Espring	is	a	concept	introduced	in	this	paper	and	is	a	

spring	force	that	pulls	the	vertices	towards	each	other	with	a	weight	of	k,	 .	Espring	is	needed	to	
ensure	that	there	is	always	a	local	minimum	for	the	energy	function	to	achieve.	Its	inclusion	prevents	errors	
associated	with	an	energy	function	that	has	no	minimum	which	is	illustrated	below.	The	paper	notes	that	the	
value	of	k	can	be	reduced	in	later	iterations	after	the	mesh	is	in	the	neighborhood	of	its	final	value.	

	

	
Example	of	a	mesh	without	Espring	whose	energy	function	did	not	have	a	minimum.	

	

	 Legal	Moves	
The	paper	outlines	three	legal	moves	that	can	be	applied	to	the	mesh	in	order	to	achieve	the	

minimum	of	the	energy	function.	These	are	edge	collapse,	edge	split,	and	edge	swap.	They	are	illustrated	
below	with	their	respective	formulas.	

original mesh	
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Edge	collapse:	vh	=	0.5(vj	+	vi)	with	all	edges	that	previously	terminated	in	j	or	i	now	terminating	in	h.	
Edge	split:	vh	=	0.5(vj	+	vi)		with	i	and	j	now	sharing	an	edge	with	h	and	all	vertices	that	share	an	edge	with	i	
and	j	now	sharing	an	edge	with	h.	
Edge	swap:	The	edge	between	i	and	j	is	terminated	and	is	replaced	with	an	edge	between	k	and	l	(vertices	that	
are	adjacent	to	i	and	j,	on	the	same	face,	and	were	previously	unconnected).	

	 Localization	
In	theory,	the	energy	of	the	entire	mesh	would	be	evaluated	after	each	legal	move,	but	computing	the	

energy	of	the	entire	mesh	is	too	inefficient	to	be	practical.	The	paper	uses	the	method	of	localization	to	reduce	
this	problem.	Though	they	did	not	go	in	depth	into	the	mathematical	method	used,	the	basic	concept	is	that	a	
change	a	local	area	of	a	mesh	will	not	affect	vertices	far	away	(see	figure	below).	

	
Thus,	only	the	energy	function	a	submesh	of	the	local	area	of	a	legal	move	is	evaluated	to	determine	

the	which	legal	move	to	use	to	create	the	next	iteration.	This	is	much	more	efficient	and	yields	results	on	par	
with	evaluating	over	the	whole	mesh.	

Algorithmic	Approach	
The	algorithmic	method	used	to	implement	the	mathematical	concepts	is	outlined	below.	

	 Pseudo	Code	
The	following	is	the	pseudo	code	ideal	for	implementing	this	mesh	simplification	process	that	is	used	

in	the	paper:	
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Idealized	pseudo	code	for	mesh	simplification	

	
First,	the	initial	mesh	is	taken	in	and	the	vertex	positions	of	the	reconstructed	mesh	are	adjusted	to	

reach	the	minimum	distance	from	the	original	mesh	(this	is	the	OptimizeVertexPositions	function	and	is	the	
"inner	minimization	problem").	Next,	the	program	evaluates	the	possible	legal	moves	and	for	each	one	
evaluates	the	energy	function	after	the	vertex	positions	are	optimized.	The	legal	move	that	produces	the	
lowest	energy	function	is	accepted	as	the	next	iteration	of	the	optimized	mesh	and	the	process	is	repeated	
until	convergence	is	reached	(this	is	the	“outer	minimization	problem”).	
	

Results	

The	following	is	a	table	of	results	of	this	method	applied	to	various	mesh	topologies	and	energy	
function	values.	A	table	of	figures	of	the	initial	and	final	meshes	for	each	table	entry	is	also	included.	
	

	



Schwarz	5	

Table	of	results	
	

	
Table	of	figures	

	
The	resulting	distances	were	on	the	order	of	magnitude	of	10^-3	which	may	be	sufficient	for	our	

application.	Important	to	note	is	that	a	higher	value	of	crep	(which	corresponds	to	the	complexity	of	the	
resulting	mesh)	had	a	significant	impact	on	the	final	distance	energy,	increasing	it	from	1.86	x	10^-3	to	9.19	x	
10^-3.	

Assessment	
Overall	I	thought	that	this	paper	was	well	written	and	presented	a	versatile	method	for	mesh	

simplification	that	is	applicable	to	many	applications.	They	broke	the	definition	of	their	terms	and	methods	
into	easily	understandable	sections	and	maintained	a	linear	thought	process	through	their	explanation.	
However,	there	were	also	some	points	on	which	I	believe	this	paper	could	be	improved.	

Some	of	the	positive	aspects	of	this	paper	were	that	their	data	representation	(meshes	and	point	
clouds)	was	analogous	to	the	data	representation	for	our	project	which	would	make	implementation	of	this	
method	easier.	In	addition,	this	method	allows	for	the	recovery	of	sharp	edges	which	is	important	for	our	
ultimate	goal	of	isolating	the	cranioplasty	defect	wall.	Unlike	some	mesh	simplification	algorithms	I	looked	
into,	this	method	allows	for	both	the	deletion	and	addition	of	points	which	allows	for	tighter	control	of	overall	
distance	from	the	original	mesh.	Similarly,	the	ability	to	weight	the	terms	in	the	energy	function	allows	for	
tighter	control	over	the	metrics	of	the	final	mesh.	As	our	project	is	a	medical	application,	this	is	important	as	
we	cannot	readily	sacrifice	accuracy	for	simplicity.		

Though	for	the	most	part	this	paper	was	efficient	at	conveying	the	information	necessary	to	
understand	their	method,	they	also	included	a	lot	of	extrenuous	concepts	that	weren't	particularly	necessary	
to	understanding	their	method	and	only	came	up	sparingly	in	their	discussion	such	as	the	barycentric	
representation	of	elements.	Also	I	did	not	feel	that	Espring,	one	of	the	unique	features	of	their	method,	was	
discussed	in	depth	enough.	They	explained	the	necessity	of	having	a	third	term	that	ensured	a	minimum,	but	
why	they	used	Espring	specifically	was	not	touched	on	other	than	the	kind	of	arbitrary	reasoning	that	"it	
worked".	I	would	have	been	interested	in	learning	about	the	effects	that	using	a	different	third	term	or	having	
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additional	energy	function	terms	would	have	had	on	the	overall	results	(neither	of	these	ideas	were	
discussed).	Locality	is	also	not	discussed	in	depth	despite	being	an	important	part	of	their	algorithm.	They	
describe	it	as	only	checking	the	energy	function	over	a	"submesh	of	the	neighboring	vertices",	but	the	exact	
definition	of	what	this	means	is	not	given.	I	also	would	have	liked	to	see	more	noisy	initial	models	for	their	
test	cases	as	this	would	have	more	closely	matched	what	we	are	interested	in	using	this	method	for.	More	
generally,	it	is	not	unrealistic	to	assume	that	a	starting	mesh	would	be	more	irregular	than	the	ones	they	have	
as	representative	of	their	method's	capabilities.	Finally,	there	was	very	little	discussion	on	their	mesh-to-
mesh	distance	calculation.	They	use	the	sum	of	squared	differences,	but	make	no	note	on	the	potentially	large	
effect	using	a	different	distance	energy	equation	(such	as	max	distance)	could	have	on	the	final	result.	This	is	
very	important	to	our	application	as	we	need	to	find	an	accurate	and	robust	gauge	of	distance.	I	
supplemented	this	paper	by	reading	another	one	that	exclusively	discusses	error	calculation	(Aspert	et	al.).	

Additionally,	just	as	a	separate	note,	it	remains	to	be	seen	for	our	project	whether	the	time	it	would	
take	to	simplify	our	meshes	would	outpace	the	time	it	would	take	to	simply	run	our	computations	over	an	
unsimplified	mesh.	If	there	is	not	a	gain	in	the	overall	computational	time,	using	it	for	that	end	is	moot,	
although	there	is	still	promise	in	using	it	for	segmentation.	

Measure	of	Error	–	Aspert	et	al.	
In	this	paper	Aspert	et	al.	begin	by	explaining	the	importance	of	being	able	accurately	gauge	the	

distance	between	meshes.	They	outlined	some	common	methods	of	doing	this	(mean	square	error	and	total	
square	error)	but	then	suggested	that	a	variation	of	the	Hausdorff	distance	might	provide	a	more	accurate	
measure	of	error.	Finally	they	outlined	an	efficient	method	for	finding	this	distance.	Note	that	this	paper	is	
meant	to	supplement	the	first	paper	and	thus	the	discussion	is	not	as	in	depth.	

Background	
	 The	Hausdorff	is	the	max	Euclidean	distance	from	surface	to	surface.	Below	are	the	equations	from	
finding	the	distance	from	mesh	S	to	mesh	S’.	
	

Euclidean	norm:	 			 Hausdorff	distance:  
We	are	now	ready	to	discuss	the	methods	outlined	in	Aspert	et	al.	

Mathematical	Approach	

	 Hausdorff	Distance	

	 As	noted	before	the	Hausdorff	distance	is	 .	However,	it	is	important	to	note	that	
this	is	not	a	symmetrical	distance,	(see	figure	below).	In	other	words,	 	

	
Example	of	non-symmetrical	distance	

	
This	paper	suggests	that	a	rigorous	method	of	distance	calculation	is	to	take	the	max	of	the	two	distances,	
max[d(S,	S’),	d(S’,	S)]. 
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Algorithmic	Approach	

	 Grid	Sampling	
	 In	order	to	quickly	compute	the	Hausdorff	distance	over	a	large	mesh,	the	paper	outlines	a	method	
for	grid	sampling.	This	allows	for	a	discrete	representation	of	the	surface	integral	to	compute	the	Hausdorff	
distance.	

 
Example of n = 5 grid sampling 

Results	
Below	are	the	results	of	the	paper.	They	compared	the	forward	and	backward	Hausdorff	distances	

and	noted	that	they	could	diverge	significantly.	This	showed	that	taking	the	max	of	the	two	might	provide	
more	rigorous	error	estimation.	Then	they	compared	the	time	to	compute	the	error	to	an	analogous	method	
that	did	not	use	the	grid	sampling.	Their	method	(Mesh)	was	significantly	faster.	

   
      Differences in metrics of error            Time to compute error 

Assessment	
	 This	paper	did	an	excellent	job	of	outlining	a	distance	finding	method	that	would	work	for	a	wide	
variety	of	topologies,	not	just	more	regular	ones.	It	gave	special	attention	to	unusual	corners	and	curves	that	
could	potentially	be	inconsistent	when	using	other	error	finding	methods.	In	addition	it	gives	an	“upper	
bound”	on	the	error	estimate	that	would	be	useful	in	our	application	where	we	want	to	limit	the	maximum	
error	at	all	times.	However,	this	method	is	more	complicated	than	the	wide	spread	max	or	mean	error	finding	
and	its	usefulness	would	be	dependent	on	the	application.	Also,	though	the	grid	sampling	greatly	reduces	
computational	time	it	cannot	completely	exhaust	the	surface	meaning	some	inaccuracy	would	be	possible.	

Conclusion	
	
	 The	Hoppe	et	al.	paper	may	provide	a	useful	way	to	simplify	our	mesh	and	an	alternative	segmentation	
method.	However,	it	is	unknown	whether	our	data	would	respond	well	to	this	optimization	method	or	if	the	time	
tradeoff	 to	 compute	 the	 simpler	mesh	would	be	worth	 it	 in	 the	 long	 run.	 Similarly,	 the	Aspert	et	 al.	 provides	a	
more	rigorous	method	for	distance	calculation	that	we	need	to	find	the	accuracy	of	our	defect	wall,	but	it	remains	
to	be	seen	whether	it	will	provide	a	much	different	result	for	our	particular	kind	of	mesh.	Both	however	provide	
interesting	solutions	to	challenges	in	our	project	and	we	will	be	gauging	the	feasibility	and	utility	of	implementing	
them	in	the	upcoming	weeks.	


