Improving Single-Stage Cranioplasty Prosthetics:

An expansion of single-stage cranial defect repairs and implants
Final Report
Project 12
Members: Erica Schwarz, Willis Wang

Mentors: Dr. Mehran Armand, Dr. Chad Gordon, Dr. Ryan Murphy

Project Summary

Summary/Abstract

During some cranial surgeries, pieces of the
skull must be removed in order to gain access to
the brain. Directly following these surgeries,
cranioplasty procedures are used to repair defects
in the skull. However, in many cases the original
bone flap is damaged during removal from the

skull is unable to be replaced. In these cases, a
cranial implant must be made to cover the exposed Bone flap
defect. A implant that perfectly conforms to the
defect shape is ideal as it prevents “dead space” in
the skull and associated infection. However, creating a fitted implant presents its own challenges.
Using a machine to create one requires the patient to come back at a separate time creating a
two-stage surgery which during the interim the patient does not have an ideal implant. To
prevent the necessity of two-stage surgery, many reconstructive surgeons will have an oversized
implant of the expected defect area machined beforehand and then manually carve it to be the
correct shape of the actual defect during the surgery. This is done by trial and error and takes a
considerable amount of time (10 - 80 min). Recently Dr. Gordon, Dr. Armand, and Ryan Murphy
developed a method that projects the implant outline onto the oversized implant which reduces
this time significantly, but this method is limited by the complexity of implant. Last year, a new
system was developed for using 3D scanner to create a machined single-stage implant, but the
effectiveness of using 3D scanners and point cloud models to completely capture defect
geometry and accurately register it back into the patient space is currently unknown. This project
will create ground truth models of cranial defects to test and validate accuracy of the 3D
scanning system. During this process we will refine and improve the 3D scanning system from
implant capture to patient registration.

Background and Current Issues

Cranioplasties are used to reconstruct the site of craniotomies and other cranial surgeries
that remove sections of the skull. These cranioplasties are also known as secondary cranial
reconstructions and are performed for patients who require staged reconstruction after
craniotomies. These craniotomy procedures involve the removal of a section of the skull. The
resulting skull flap is often not suited for immediate replacement due to issues such as risk of
infection or excess removed material. As a result, these skull flaps are often frozen or thrown
away altogether and a cranioplasty is performed instead. The cranioplasty is usually performed to
alleviate concerns of safety and protection, cosmetic appearance restoration, and treatment of
issues associated with leaving a portion of the skull removed, but can carry its own risks. These

procedures are generally performed with an implant made of Poly-Methyl Methacrylate
(PMMA) or a titanium mesh.

Due to risk of infection after such a procedure, creating a well-fitting prosthetic is
important for increasing quality of life and risk management. Recently, an alternative method
which involves the implementation of on-site fabrication of the prosthesis has been effective in
cutting down on the number of separate surgeries performed. In this system, surgeons use a
Customized Cranial Implant, or CCI, made of PMMA. These CClIs are fabricated preoperatively
from patient CT scans and modified through Computer Aided Design. These CCIs are made as
an oversized section of the operating area based on information from the CT scan. The main
advantage of these CCls is their ability to conform more closely to the unique curvature of the
skull. Specifically, the thickness of the skull is taken into account when making these CCls
whereas a prosthetic made of titanium would be unable to achieve the same precision. During the
surgery, the surgeon machines the CCI to match the size and shape of the defect. However, this
is labor intensive and can take upwards of an hour.

Although this single-staged format is already a significant advancement from previously
used multi-staged reconstruction, there is still room for improvement. In an effort to further
improve procedure times, Dr. Gordon, Dr. Armand, and Ryan Murphy have devised a system
which includes a Polaris optical tracker and a laser projection system. This system projects the
trace onto the oversized CCI for more accurate cutting and shorter operation times. However, the
system is not without its drawbacks. Specifically, it struggles with more complicated geometries
and has difficulty collecting points describing the bevel angle of the defect. Additionally, the
polaris system itself can be difficult to setup and is very expensive.

As 3D handheld scanners become cheaper and more accurate, the viability of replacing
the polaris system with newer technology becomes more feasible. In the previous year, there was
a group that built upon Dr. Gordon, Dr. Armand, and Ryan Murphy’s system by incorporating a
relatively inexpensive 3D scanner in the form of the Structure Sensor (an attachment for the
iPad) as a cheaper and more effective alternative to the Polaris system. The project was generally
a success, but was limited in that it did not incorporate defect bevels and more complicated
geometries and also did not evaluate scan-to-patient registration accuracy. This project proposes
to further develop this system with updated segmentation algorithms that allow for more
complex feature detection and incorporate defect-to-patient registration in order to put the
oversized CCI implant and the scanned defect in the same space (a necessary step for later
implant fabrication). Will will do this using ground truth test cases that incorporate a variety of
realistic defect geometries.

Procedure Outline
This projects proposes to further expand on the previous years project of integrating a
new subsystem into the cranioplasty pipeline. Specifically, the subsystem includes the use of a

3D scanning hardware to render a mesh model of the defect. This model is then registered to the
patient’s CT scan and subsequently the CCI to allow for quick and accurate machining. This
project will be focusing on extending the segmentation subroutines to allow for faster and more
accurate parsing of the bevel angles.

The beginning workflow of the cranioplasty procedure remains greatly unchanged from
the current standard of care. After the cranial defect is exposed, the operator will use a handheld,
wireless device to take a 3D scan of the defect. In our project, we use the iPad mounted Structure
Sensor. The iPad provides a convenient and intuitive interface, but other devices (such as the
Kinect) with similar accuracies would work equally as well. For the Structure Sensor workflow,
the optimum accuracy is obtained when scanning from within half a meter distance from the
desired object. Scanning is done by pointing the scanner at the defect site and then slowly
moving it around the site area until the Structure Sensor interface notifies the user that it has
completed its scan.

After the scan is complete, the Structure Sensor can automatically send the model to an
uplinked computer. From there, the operator will open up Slicer and load a module called
“Defect Registration”. This module asks for three models: the scanned data, the previously made
patient skull model (produced from patient CT scan), and the CCI model (which is in the patient
model space). The operator will then press “Apply” to run all necessary functions. The program
will first segment the defect wall from the defect and then will transform both into patient space
using the method outlined below. All of this is automatic and does not require any additional
user input (though there are some parameters that can be changed if desired). After that, an
algorithm with calculate the machining path necessary to cut the CCI down to match the defect
wall in the implant space which will later be passed on to a laser cutter for final fabrication.

Procedure Pipeline

Procedure Pipeline

 — CT Scan of the Skull

Find tumor in brain

Pre-operative

Create oversized implant of
surgical area

Pull back scalp and cut out
skull fragment
Our subsystem

Resect tumor 3D scan defect

Design implant Segment defect wall

Intra-operative

- Register defect to patient
EE— Machine implant and implant space

Attach implant to skull

Procedure Evaluation
Our expansion of the 3D scanning system will be evaluated on the following metrics:

1. Accuracy
We evaluated our accuracy using average point cloud to surface distance. Our registration
method had an average model to ground truth error of 0.9mm after point to surface
registration. Since the 3D scanner in this procedure is documented to have an accuracy of
Imm when placed within 0.5m of the scanning target, our registration is well within the
error propagated inherently through the scanning process.

2. Robustness
We were able to validate the robustness of the segmentation method by using ground
truth models, and showed that it was able to segment a complete defect ring even when
handling complex or irregular defects. We verified the robustness of the registration
method by showing that the same final pose was obtained regardless of the initial pose of
the defect scan.

3. Ease of Use
When completed, this system should greatly increase ease of use compared to the current
standard of care. There is no quantitative measurement for this procedure evaluation
metric, but using an iPad and an automated implant process is easier to implement than
the current standard of care which involves larger machines or trial-and-error cutting of
the implant. In addition, our workflow is completed automated, requiring no user input
other than taking the scan and selecting the necessary models.

4. Time
This system will not require extensive equipment setup and would not require manual
cutting of the implant. This will reduce time costs before, during, and after the surgery
compared to current single-stage and double-stage cranioplasty workflows. However,
currently our program runtime is ~10 minutes. Though this is still an improvement on the
current method of implant design (which can take over an hour), we believe that we can
greatly reduce this time even further with future development.

5. Cost
This system should cost less than $2000 to implement with the primary cost being the
handheld 3D scanner. In addition, the reduction in cranioplasty time and reoperations due

to complications associated with ill-fitting prosthetics should significantly reduce the
overall cost of the cranioplasty procedure.

Approach and Algorithms

The approach of the subsystem is to first take a 3D scan of the skull’s area of defect. This
scanned data then has segmentation performed on it to retrieve the walls of the defect area. Once
the segmentation algorithm is complete, the segmented defect needs to be registered to the
patient’s skull, and in doing so, the CCI. This process works because the oversized implant is
fashioned originally from the patient’s CT scan data - its point cloud is already correctly aligned
with the patient’s skull. After registration, a machine path around the defect can be found in the
CCI space which allows for fast and accurate implant creation. An overview of the separate
segmentation and registration algorithms will be outlined below.

Segmentation

A scan of the defect site of the skull is taken with a 3D camera. In the case of the project,
a Structure Sensor is used in combination with Skanect. The outputted 3D point cloud is then
segmented using a directional filter and a scoring system. The segmentation algorithm used is
from the previous year’s project and the implementation will not be covered in-depth.

Physical ground truth models were not used as the construction time and price were both
out of the project’s scope; however, plans are being made to construct 3D prints during the
continuation of the project. To quickly and effectively test the robustness of the segmentation
algorithm, a number of simulated defects were constructed via patient CT scans of skulls. This
was done by creating a defect geometry, creating a defect in the skull model using a boolean
operation, remeshing the resulting model to have the same point cloud density as the 3D scanner,
and then introducing noise and smoothing that was quantitatively similar to the scanner (i.e.
average of Imm error). At the end of this process the simulated model was quantitatively and
qualitatively identical to actual scanned models and provided the ability to validate the
segmentation algorithm against a myriad of realistic geometries. These simulated defects were
constructed with geometries of varying regularity classified as either regular if their bevel angle
was constant or irregular if their bevel angle ranged within the model itself. The regular
geometries had bevel angles ranged from 45-90 degrees around their entire circumference.
Models with irregular geometries had a bevel range of 10 degrees taken from this 45-90 degrees
overall range.

Registration

The registration of the defect data back to the skull model proved to be bulk of the work
done during the course of the project. The process will primarily revolve around registering the
defect area scan to the skull. This defect area point cloud will have the previously segmented
defect walls removed via a nearest-neighbors algorithm. This is done so that the geometry of the
newly modified defect area is more in line with the original geometry of the skull before the
defect.

During the course of the registration process four meshes are imported: The patient
pre-operational CT skull scan, the defect area scan, the segmented defect walls, and the
oversized implant generated from the CT skull scan. The first step of the registration algorithm is
to align the surfaces of the defect scan to the patient CT skull data. We can do this by first
considering the fact that the human skull can roughly be approximated by a sphere. This
similarly implies that its subsections can be fitted against a sphere. With this in mind, a
RANSAC-based sphere fitting algorithm can be used to find the rotational centers of each
“sphere” that the respective point clouds are aligned to. Transformation matrices can then be
constructed with the point cloud’s respective sphere centers as the translational components to
center the skull to the origin and the defect area to the surface of the skull. Additionally, the
transformation matrix of the skull and defect area scan is applied to the oversized implant and the
segmented defect walls. This is done so that a good initial guess for ICP using center of mass
alignment can be done.

Now that all the meshes have their surfaces approximately aligned, we must provide ICP
with a good initial guess. This is done by rotating the defect site of the defect area scan to be in
line with the oversized implant location. This is done by finding the geometric center of both the
oversized implant and the segmented defect wall (since this is considered the ‘true’ geometric
center of the defect area scan as well). A rotation matrix that rotates the center of the segmented
defect wall and the oversized implant is generated via Rodrigues' Rotation Formula. This
generated matrix is then applied to the

100

segmented defect wall and the defect area point
cloud.

With a good initial guess properly
calculated and aligned, registration can begin.
Unfortunately, ICP by itself is incredibly prone
to local minima problems. Therefore, a two-fold
approach is taken. First, the initial guess is
perturbed in an area of [-15°, 15°] along each

three dimensional axis. In each new location, the
defect area point cloud is also rotated a full 360°
along the geometric center of its defect site. Both

ranges are segmented a number of times defined by an input value: four was the number we
chose. Similar to above, Rodrigues’ Rotation Formula is used in the computation of the 360°
rotation along the geometric center axis. Second, a point-to-surface based ICP is run with the
lowest error value transformation found in the previous step as an initial seed to further refine the
final registration. This point-to-surface based ICP algorithm is taken from Seth Millings and
works by using surface features as another criteria for the error function. This output is our final
result.

Results and Significance

Using the method outlined above we gained the following defect walls from the different

geometries:
Regular, 90° Regular, 80° Regular, 70° Regular, 60° Regular, 45°

Irregular, 90-80° Irregular, 80-70° Irregular, 70-60° Irregular 60-45°

As can be seen from the images, for every geometry intered, the segmentation method was able
to produce a complete ring around the defect wall. Some of these models, particularly the
irregular ones, do have noise in the resulting output, however our current outline for calculating
the machining pose and path is robust to noise. As long as there is some defect wall data around
the entire circumference it will be able to create the defect. This validates the robustness of our
segmentation method.

Using the registration method described above, our average scan to ground truth defect model

error was 0.9mm and we were able to confirm by visual inspection that this minima was in the
actual defect location and not just a coincidental local minima. As the error associated with the
scanning process is 1mm, this result was well within our expected margin of error. In addition,

the final pose was obtained regardless from initial scan position showing that this method is
robust and repeatable.

These results are significant because they are completely automated and robust to initial scan
data. This means that they can easily fit into the operator’s work flow. The registration method in
particular represents significant development in the implant design process as previously there
had been no robust way to automatically transform the defect scan into the patient model space.

Management Summary

Division of Labor

The division of labor for this project was distributed equally with both team members working
on all components of the project. However, the primary responsibilities of the two members were
as follows:

- Erica Schwarz: Creating ground truth models, implementing sphere fitting, Slicer module
creation, registration algorithm creation.

- Willis Wang: Matrix transformations, Python conversion, registration algorithm creation,
testing and debugging.

Proposed Deliverables

e Minimum
o Segment and process point cloud of defect to create defect mesh
o Register defect mesh to patient
o Register mesh to oversized prosthetic
e Expected
o Create ground truth models
o Validate and improve process accuracy
o Quantify accuracy of implant creation
o Package process as Slicer module
e Maximum
o Test process with cadavers
o Register oversized prosthetic to URS machine
o Define URS path for cutting fitted prosthetic

Actual Deliverables

e Minimum
o Segment and process point cloud of defect to create defect mesh
o Register defect mesh to patient
o Register mesh to oversized prosthetic
e Expected
o Create ground truth models
o Validate and improve process accuracy
o Quantify accuracy of implant creation
o Package process as Slicer module
e Maximum
o Detfine URS path for cutting fitted prosthetic (in progress)

Future Plans
e Test process with cadavers
e Register oversized prosthetic to URS machine
e Define URS path for cutting fitted prosthetic

Dependencies

Status Dependency Description

Completed Structure Sensor Sensor to be used for scanning incision site. Provided
by Dr. Armand.

Completed iPad iPad to use with structure sensor. Provided by Dr.
Armand.

Completed Software Provided by Ryan Murphy. Contains existing lab

Repository code, system, and test data. This will also be where

we store and document our software modules.

Completed Patient CT Scans | Will be used to create ground truth models. Provided

by Ryan.

All dependencies were resolved during the development process.

Milestones

Expected Date Objective Completed Date

2/15 - 3/14 Testing Data Production and Planning 3/21

2/22 - 4/25 Registration and Segmentation Development 4/25
3/14 - 5/02 Accuracy Testing 5/04
4/25-5/9 Procedure and URS Integration In progress

Future Plans

We have three additional goals for this project that we plan to complete:

1. We plan to do more thorough testing and complete trials with cadavers rather than 3D
printed models. We will be working with Mehran Armand, Chad Gordon, and Ryan
Murphy to do this. After this data is obtained we plan to write a paper for journal
publication or conference that discusses our registration method.

2. We plan to complete work on calculating the machining path. After this is done, the
pipeline from defect design to defect creation will be complete. Though currently we
believe that the URS will be an effective means for machining the personalized implant
from the CCI, we will keep the machine pose information general. This is because it may
be possible to machine the implant with a laser cutter instead if work on it is complete
within our timeline.

3. We also plan to compile a very thorough manual of our process in addition to the basic
documentation we have for our code now. As our process deals with several different
data types, we want to ensure that future developers can easily identify how to use
individual modules from our code.

All of these are to be completed over the upcoming summer, with the main goal being to produce
a paper for publication.

Technical Appendices

Below is our annotated Matlab code that outlines our novel registration method for registering a
scanned defect to the patient skull model. It is a more straightforward predecessor to our later
Python implementation that we use in our final Slicer module and implements the same
algorithm. Note that the read_stl and point to surface registration require code from the BIGGS
code repository.

11

Matlab Code:
tic;
%$Load skull and defect point clouds

[verticesDefect, facesDefect] = read mesh('ScannedSkullFeaturelessUnits.ply');

[verticesSegment, facesSegment] =

read mesh ('ScannedSkullFeaturelessUnitsSegLargest.ply');
[verticesSkull, facesSkull] = read mesh('PreDefect.ply');
[verticesImplant, facesImplant] = read mesh('oversizedImplant.ply');
[verticesPost, facesPost] = read mesh('PostDefect.ply');
SkullSurface = f_stlMesh to_surface(f_read stl('PreDefect.stl'));
PostSurface = f_stlMesh to_surface(f_read stl('PostDefect.stl'));

% Remove wall from scan data
rem = ones (length(verticesDefect), 1);
[~, dist] = knnsearch (verticesSegment, verticesDefect) ;
while min(dist) < 0.0003

for i = 1l:1length(dist)

if dist(i) < 0.0003

rem(i) = 0;
end

end

verticesDefect(rem(:) == 0,:) = [];

rem = ones (length(verticesDefect), 1);

[~, dist] = knnsearch (verticesSegment, verticesDefect) ;
end

ptCloudSkull = pointCloud (verticesSkull) ;
ptCloudSegment = pointCloud(verticesSegment) ;
ptCloudDefect = pointCloud (verticesDefect) ;
ptCloudImplant = pointCloud(verticesImplant) ;
ptCloudPost = pointCloud(verticesPost) ;

%Denoise the point cloud data of defect
ptCloudDefect = pcdenoise (ptCloudDefect) ;

$Fit sphere to defect

maxDistance = 0.1;

[defectSphere,defectInlierIndices] = pcfitsphere (ptCloudDefect,maxDistance) ;
defectInliers = select (ptCloudDefect,defectInlierIndices) ;

$Fit sphere to skull
maxDistance = 0.1;
[skullSphere, skullInlierIndices] = pcfitsphere (ptCloudSkull,maxDistance) ;

%$Shift models to be concentric at origin.
centerDefect = defectSphere.Center;
centerSkull = skullSphere.Center;

ADefect = [1 0 0 O;
0100;
0010;
-centerDefect (1) -centerDefect(2) -centerDefect(3) 1];

12

tform = affine3d (ADefect) ;
ptCloudDefectCentered = pctransform(ptCloudDefect, tform) ;
ptCloudSegmentCentered = pctransform(ptCloudSegment, tform);

ASkull = [1 0 0 O;
010 0;
0010;
-centerSkull (1) -centerSkull(2) -centerSkull(3) 1];

tform = affine3d (ASkull) ;

ptCloudSkullCentered = pctransform(ptCloudSkull, tform) ;
ptCloudImplantCentered = pctransform(ptCloudImplant, tform) ;
ptCloudPostCentered = pctransform(ptCloudPost, tform);

translateBase = [-centerSkull(l) -centerSkull(2) -centerSkull(3)];
translate = repmat (translateBase, size(SkullSurface.nodeData, 1), 1);
translatePost = repmat(translateBase, size (PostSurface.nodeData, 1),

SkullSurface.nodeData = SkullSurface.nodeData + translate;
PostSurface.nodeData = PostSurface.nodeData + translatePost;

$Match defect center of mass to oversized implant center of mass
centerImplantMass = mean((ptCloudImplantCentered.Location)) ;
centerDefectMass = mean ((ptCloudDefectCentered.Location)) ;
centerSegmentMass = mean (ptCloudSegmentCentered.Location) ;

% Rotate to match center of masses

%$Convert vectors to unit wvectors

unitImplantCenter = centerImplantMass/norm(centerImplantMass) ;
unitDefectCenter = centerDefectMass/norm(centerDefectMass) ;

unitSegmentCenter = centerSegmentMass/norm(centerSegmentMass) ;

%Use Rodrigues' Rotation Algorithm

v = cross(unitImplantCenter, unitSegmentCenter) ;
s = norm(v) ;

c = dot(unitImplantCenter, unitSegmentCenter) ;
v cross = [0 -v(3) v(2);

v(3) 0 -v(1);
-v(2) v(1) 0];

R = eye(3) + v_cross + v_pross*v_cross*(1—c)/(s*s);
AMass = [R(1,:) O;

R(2,:) O0;
R(3,:) O0;
000 1],

tform = affine3d (AMass) ;
ptCloudDefectCentered = pctransform(ptCloudDefectCentered, tform) ;
ptCloudSegmentCentered = pctransform(ptCloudSegmentCentered, tform) ;

1);

13

figure() ;

pcshow (ptCloudDefectCentered.Location, 'r');
hold on

pcshow (ptCloudSkullCentered) ;

pcshow (ptCloudImplantCentered.Location, 'b');
pcshow (ptCloudSegmentCentered.Location, 'g');
hold off;

o°
o°

0P

The number of times each separate axis is partitioned. The total call
$number will be this number to the power of 3.
numberOfTests = 4;

%$Initialize wvalues
currentLowestError = inf;
finalDefectCentered = [];

$Downsample the skull data
ptCloudSkullDown = pcdownsample (ptCloudSkullCentered, 'random',1) ;
ptCloudImplantDown = pcdownsample (ptCloudImplantCentered, 'random',1l);

%Create list of degrees to iterate through. Last index is removed since 2pi
%$is equivalent to 0.
degrees = linspace(-pi/12, pi/12, numberOfTests) ;

%Counter to see how far into the program we currently are
count = 0;

$For each axis...
for i = degrees
for j = degrees
for k = degrees
%$Create various "about axis" rotations

x_transform = [1 0 0 O;
0 cos(i) -sin(i) O;
0 sin(i) cos (i) O;
000 1];
y_transform = [cos(]j) O sin(]j) O;
010 0;
-sin(j) O cos(j) O;
000 1];
z_transform = [cos(k) -sin(k) 0 O;
sin(k) cos(k) 0 O;
0010;
000 1];

$Apply "about-axis" rotations

tform = affine3d(x_transform.');

tempCloud = pctransform(ptCloudDefectCentered, tform);
tempSegment = pctransform(ptCloudSegmentCentered, tform);

tform = affine3d(y_transform.');
tempCloud = pctransform(tempCloud, tform) ;
tempSegment = pctransform(tempSegment, tform) ;

14

tform = affine3d(z_transform.');
tempCloud = pctransform(tempCloud, tform);
tempSegment = pctransform(tempSegment, tform);

tempCloudCenter = mean (tempSegment.Location) ;
unitTempCenter = tempCloudCenter/norm(tempCloudCenter) ;

%$Rotate along the center-of-mass axis
interval = 2*pi/ (numberOfTests) ;
for 1 = 1:numberOfTests
K = [0 -unitTempCenter (3) unitTempCenter (2) ;
unitTempCenter (3) 0 -unitTempCenter(l) ;
-unitTempCenter (2) unitTempCenter (1) O0];

R = eye(3) + (sin(interval*l)*K) + (l-cos(interwval¥*l)) *K*K;
R = [R(1,:) O;

R(2,:) O0;

R(3,:) O0;

000 1];

tform = affine3d(R) ;
icpCloud = pctransform(tempCloud, tform) ;

$ICP from segmented defect to skull

ptCloudDefectDown = pcdownsample (icpCloud, 'random',k1l) ;

[tform, movingReg, error] = pcregrigid(ptCloudDefectDown,
ptCloudSkullDown) ;

%$Check error

if (error < currentlLowestError)
currentLowestError = error;
finalDefectCentered = movingReg;
finalTform = tform;

end

$Display counter
count = count + 1;
disp([num2str (count), '/', num2str (length(degrees)”4)]);

end
end
end
end
figure() ;
pcshow (finalDefectCentered.Location, 'r');
hold on;

pcshow (ptCloudSkullCentered) ;
hold off;

o°
o°

surfReg = SurfaceRegistration;

surfReg.SamplePoints = finalDefectCentered.Location.';
surfReg.SurfaceModel = SkullSurface;

surfReg.Register;

tform = affine3d(surfReg.T_Final.');
finalDefectCentered = pctransform(finalDefectCentered, tform) ;

%$Show final point clouds

figure() ;

pcshow (finalDefectCentered.Location, 'r');

pcwrite (finalDefectCentered, 'finalDefect', 'PLYFormat', 'binary') ;
hold on;

pcshow (ptCloudSkullCentered) ;

hold off;

toc;

References

1. Aspert, Nicolas, Diego Santa Cruz, and Touradj Ebrahimi. "MESH: measuring errors
between surfaces using the Hausdorff distance." ICME (1). 2002.

2. Cates JE, Lefohn AE, Whitaker RT. GIST: an interactive, GPU based level set
segmentation tool for 3D medical images. Med Image Anal. 2004 Sep 8 (3):21731.

3. Cignoni, Paolo, Claudio Montani, and Roberto Scopigno. "A comparison of mesh
simplification algorithms." Computers & Graphics 22.1 (1998): 37-54.

4. Gordon CR, Fisher M, Liauw J, Lina I, Puvanesarajah V, Susarla S, Coon A, Lim M,
Quinones Hinojosa A, Weingart J, Colby G, Olivi A, Huang J. Multidisciplinary
Approach for Improved Outcomes in Secondary Cranial Reconstruction: Introducing the
Pericranial Onlay Cranioplasty Technique. Neurosurgery. 2014 Jun 10 Suppl 2:17989.

5. Herbert M, Pantofaru C. A Comparison of Image Segmentation Algorithms. Carnegie
Mellon University 2005. The Robotics Institute

6. Huang GJ, Zhong S, Susarla SM, Swanson EW, Huang J, Gordon CR. Craniofacial
Reconstruction with Poly (Methylmethacrylate) Customized Cranial Implants. The
Journal of Craniofacial Surgery. 2015 Jan;26(1):6470.

7. Murphy RJ, Wolfe KC, Gordon CR, Liacouras PC, Armand M, Grant GT.
Computer-assisted Single-stage Cranioplasty. IEEE. Jan 2015.

16

