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Abstract To solve the mesh optimization problem we minimizearergy
functionthat captures the competing desires of tight geometric fit
We present a method for solving the following problem: Given aset and compact representation. The tradeoff between geometric fit and
of data points scattered in three dimensions and an initial triangular compact representation is controlled via a user-selectable parameter
meshM,, produce a mesh/, of the same topological type &gy, crep- Alarge value of,.,, indicates that a sparse representation is

that fits the data well and has a small number of vertices. Our ap-to be strongly preferred over a dense one, usually at the expense of
proach is to minimize an energy function that explicitly models the degrading the fit.

competing desires of conciseness of representation and fidelity to
the data. We show that mesh optimization can be effectively used
in at least two applications: surface reconstruction from unorga-
nized points, and mesh simplification (the reduction of the number
of vertices in an initially dense mesh of triangles).

We use the input mesi/, as a starting point for a non-linear
optimization process. During the optimization we vary the number
of vertices, their positions, and their connectivity. Although we can
give no guarantee of finding a global minimum, we have run the
method on a wide variety of data sets; the method has produced
good results in all cases (see Figure 1).

CR Categories and Subject Descriptors: 1.3.5 [Computer We see at least two applications of mesh optimization: surface

Graphics]: Computational Geometry and Object Modeling.

- ) ) - reconstruction and mesh simplification.
Additional Keywords: Geometric Modeling, Surface Fitting,

Three-Dimensional Shape Recovery, Range Data Analysis, Model . 1€ Problem of surface reconstruction from sampled data occurs
Simplification. in many scientific and engineering applications. In [2], we outlined

a two phase procedure for reconstructing a surface from a set of un-
. organized data points. The goal of phase one is to determine the
1 Introduction topological type of the unknown surface and to obtain a crude es-
o ] ) ] timate of its geometry. An algorithm for phase one was described
The mesh optimizatiorproblem considered in this paper can be jn [5]. The goal of phase two is to improve the fit and reduce the
roughly stated as follows: Given a collection of data pointsin number of faces. Mesh optimization can be used for this purpose.

R® and an initial triangular mesh/, near the data, find a mest Although we were originally led to consider the mesh optimiza-
of the same topological type a9, that fits the data well and hasa . 9 ginally > 0p
: tion problem by our research on surface reconstruction, the algo-
small number of vertices. . :
) ] rithm we have developed can also be applied to the problem of mesh
As an example, Figure 7b shows a set of 4102 data points sampledsimplification. Mesh simplification, as considered by Turk [15] and
from the object shownin Figure 7a. Theinputto the mesh optimiza- Schroeder et al. [10], refers to the problem of reducing the number of
tion algorithm consists of the points together with the initial mesh faces in a dense mesh while minimally perturbing the shape. Mesh
shown in Figure 7c. The optimized mesh is shown in Figure 7h. gptimization can be used to solve this problem as follows: sample
Notice that the sharp edges and corners indicated by the data havgjata pointsX from the initial mesh and use the initial mesh as the
been faithfully recovered and that the number of vertices has beenstarting pointi/, of the optimization procedure. For instance, Fig-

significantly reduced (from 1572 to 163). ure 7q shows a triangular approximation of a minimal surface with
*Department of Computer Science and Engineering, FR-35 2032 vertices. Appllc_atlon (_)f our mesh optimization algorithm to
t Department of Mathematics, GN-50 a sample of 6752 points (Figure 7r) from this mesh produces the
{ Department of Statistics Gl\]-22 meshes shown in Figures 7s (487 vertices) and 7t (239 vertices).
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tion, the Department of Energy under grant DE-FG06-85-ER25006, the Na- Which corresponds to a somewhat larger value.Qf,.
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o It presents an algorithm for fitting a mesh of arbitrary topolog-

Permission to copy without fee all or part of this material is granted ical type to a set of data points (as opposed to volume data,
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Figure 1: Examples of mesh optimization. The meshes in the top row are the initial mgghebe meshes in the bottom row are the
corresponding optimized meshes. The first 3 columns are reconstructions; the last 2 columns are simplifications.

Simplicial complexXX

verticesf 1} , {2}, {3}
edges: {1, 2}, {2 3}, {1, 3}
faces: {1, 2 3}

Topological realizatiofk| Geometric realizatiofilV)

3 g K)

Figure 2: Example of mesh representation: a mesh consisting of a
single face.

naturally adapts to curvature variations in the original mesh.

¢ It demonstrates how the algorithm’s ability to recover sharp
edges and corners can be exploited to automatically segment
the final mesh into smooth connected components (see Fig-
ure 7i).

2 Mesh Representation

Intuitively, ameshis a piecewise linear surface, consisting of trian-

simplices of K7, such that any set consisting of exactly one vertex is
a simplex inK’, and every non-empty subset of a simplex/ihis
again a simplex ik (cf. Spanier [14]). The O-simpliceg} € K
are called vertices, the 1-simplicés j} € K are called edges, and
the 2-simpliced{s, j, k} € K are called faces.

A geometric realization of a mesh as a surfaceRA can be
obtained as follows. For a given simplicial complgX, form
its topological realization| K| in R™ by identifying the vertices
{1, ..., m} with the standard basis vectofe,, ..., e,,} of R™.
For eachsimplex € K let|s| denote the convex hull of its vertices
inR™, and let| K| = U.cx |3 Letg : R™ — R? be the linear
map that sends thieth standard basis vectet ¢ R™ tov,; € R®
(see Figure 2).

Thegeometric realizatiomf }/ is the imagesv (| K|), where we
write the map ag)y to emphasize that it is fully specified by the
set of vertex position¥” = {vi1,..., v, }. The mapsv is called
anembeddingf it is 1-1, that is if ¢+ (| K|) is not self-intersecting.
Only a restricted set of vertex positiods result in ¢y being an
embedding.

If ¢y is an embedding, any poimi € ¢+ (|K|) can be parame-
terized by finding its unique pre-image ¢f’|. The vectob € | K|
with p = ¢v(b) is called thebarycentric coordinate vectoof p
(with respect to the simplicial compleX’). Note that barycentric
coordinate vectors are convex combinations of standard basis vec-
torse; € R™ corresponding to the vertices of a face &f. Any
barycentric coordinate vector has at most three non-zero entries; it
has only two non-zero entries if it lies on an edgd &f|, and only
one if it is a vertex.

3 Definition of the Energy Function

gular faces pasted together along their edges. For our purposes ifRecall that the goal of mesh optimization is to obtain a mesh that
is important to maintain the distinction between the connectivity of provides a good fit to the point séf and has a small number of

the vertices and their geometric positions. Formally, a mesis
a pair (K, V'), where: K is asimplicial complexepresenting the

vertices. We find a simplicial compleX and a set of vertex posi-

tions V' defining a meshid = (K, V') that minimizes the energy

connectivity of the vertices, edges, and faces, thus determining thefynction

topological type of the meshy = {vi,..., v}, vi € R is
a set of vertex positions defining the shape of the mesR.in(its
geometric realization).

A simplicial complexX consists of a set of verticgd, ..., m},
together with a set of non-empty subsets of the vertices, called the
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E(K, V)= FEugia(K,V)+ Erep(K) 4+ Ecpring(K, V).

The first two terms correspond to the two stated goals; the third term

is motivated below.



The distance energly; .. is equal to the sum of squared distances  optimizeMesh(K5,Vs) {

from the pointsX = {x,,...,x,} to the mesh, K=K,
" V' := OptimizeVertexPositions(Ko ,V5)
Eayal K. V) = 42 (x; K. — Solve the outer minimization problem.
as (V) Z (xs, 6v (| K1) repoat

(K',V') := GenerateLegalMove( K ,V)

PSR - i
The representation energy...,, penalizes meshes with a large V" = OptimizeVertexPositions(k ™, V")

i T -
number of vertices. It is set to be proportional to the number of i E(le ‘}V_) ?,ﬂ(/j,"v) then
verticesm of K: end(if&’ )=\

Erep(K) = crepm. :
} until convergence

The optimization allows vertices to be both added to and removed return (K,V)

from the mesh. When a vertex is added, the distance engrgy }

is likely to be reduced; the termt,., makes this operation incur . o

a penalty so that vertices are not added indefinitely. Similarly, one ~ Solve Ehe Inner optlm!;atlon problem

wants to remove vertices from a dense mesh evefyif; increases - E_([‘ ) = milly E(K,V) .

slightly; in this case,..,, acts to encourage the vertex removal. The — fqr flxed S|mpI|C!§I corrlpIeXx :

user-specified parametey,,, provides a controllable trade-off be- ~ OptimizeVertexPositions(K",V) {

tween fidelity of geometric fit and parsimony of representation. repeat{

. . — Compute barycentric coordinates by projection.
We discovered, as others have before us [8], that minimizing B = Pr?)jectPoin):s(K V) yproj
Faist + Erep does not produce the desired results. As an illus- ) !

tration of what can go wrong, Figure 7d shows the result of min- = M_m'mlzeE(A V) B). pverX{ using conjugate gradients.
imizing Eg.. alone. The estimated surface has several spikes in V' = ImproveVertexPositions( /', B)
regions where there is no data. These spikes are a manifestation of } until convergence
the fundamental problem that a minimum B§; . + E'..,, may not } returny’
exist.
To guarantee the existence of a minimum [6], we add the third GenerateLegalMove(F,V) {
term, the spring energi.,-inq. It places on each edge of the mesh Select a legal mové = K.
a spring of rest length zero and spring constant Locally modify V' to obtainV’ appropriate fork™.
return (',V")
Eopring(K, V)= > &llv, = vl }
{s,kreK

Figure 3: An idealized pseudo-code version of the minimization

It is worthwhile emphasizing that the spring energy is not a algorithm.
smoothness penalty. Our intent is not to penalize sharp dihedral
angles in the mesh, since such features may be present in the un- . . ) S .
de?lying SIS I SEEsyEE \)//Ve vizw, — of the best possible embedding of the fixed simplicial compiéx

. Woring f - : _—

regularizing term that helps guide the optimization to a desirable ‘a/nd_trf;‘eiscg(r)rrerzgo(r)lg(ljnsgt\éetrrt]:x prgilélgﬁ$ %_w_en\a/m:mt;al Qt?essi;‘”
local minimum. As the optimization converges to the solution, the Fi. ure 3 P P UbptimizeVertexPositions
magnitude ofF,,,:»y can be gradually reduced. We return to this 9 )
issue in Section 4.4. Whereas the inner minimization is a continuous optimization

For some applications we want the procedure to be scale- problemy, the outer minimization df( LK) over the simplicial com-
invariant, which is equivalent to defining a unitless energy function PI€X€SA’ € K (proceduredptimizeMesh) is a discrete optimization
E. To achieve invariance under Euclidean motion and uniform scal- problem. An algorithm for its solution is presented in Section 4.2.

ing, the pointsX and the initial mest/, are pre-scaled uniformly The energy functiont’( i, V') depends on two parameters.,
to fit in a unit cube. After optimization, a post-processing step can andx. The paramete,.,, controls the tradeoff between concise-
undo this initial transformation. ness and fidelity to the data and should be set by the user. The pa-

rameterx, on the other hand, is a regularizing parameter that, ide-

R : : ally, would be chosen automatically. Our method of settings
4 Minimization of the Energy Function  gicribed in Section 4.4.

Our goal is to minimize the energy function 4.1 Optimization for Fixed Simplicial Complex
ProcedureptimizeVertexPositi

B(K,V) = Baser(K, V) 4 Erop(K) + Eaprong (K, V) ( ptimizeVertexPositions)
o i ) o In this section, we consider the problem of finding a set of vertex
over the sek of simplicial complexed< homeomorphicto theini-  positionsy” that minimizes the energy functidii( i, V) for a given
tial simplicial complexiio, and the vertex positions V defining the  simplicial complexk’. As E,.,(K) does not depend o, this
embedding. We now present an outline of our optimization algo- gmounts to MINIMIZINGFai < (K, V) 4+ Eepring (K, V)
”‘h”?v a pseudo-code version of which appears in Figure 3. The To evaluate the distance ener@y;..(K,V), it is necessary to
details .ar.e (_jeferretyj to the next twc? subsections. N compute the distance of each data potato M = ¢+ (| k). Each

To minimize £( K, V') over bothK andV/, we partition the prob-  of these distancesiis itself the solution to the minimization problem
lem into two nested subproblems: an inner minimization dJyeor

fixed simplicial complexi’, and a outer minimization ovey'. &(xi, 6v(|K])) = min ||x; — év(bi)]?,
In Section 4.1 we describe an algorithm that solves the inner min- €l
imization problem. It find£/(K) = minv E(K, V), the energy in which the unknown is the barycentric coordinate vedr ¢
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|K| ¢ R™ of the projection ofx; onto M. Thus, minimizing three independent subproblems, one for each of the three coordi-
E(K,V) forfixed K is equivalent to minimizing the new objective  nates of the vertex positions. We will write down the problem for

function the first coordinate.
n Let e be the number of edges (1-simplices) it note thate is
F(K,V,B) = Z lIx: — ¢v (D)||* + Eepring(K,V) O(m). Letv' be them-vector whose-th element is the first coor-
i1 dinate ofv;. Letd! be the(n + e)-vector whose first elements are

n the first coordinates of the data points and whose last elements
= Z llx: — év(b)||* + Z Kl|v; — vl are zero. With these definitions we can express the least squares
Py GRTex problem for the first coordinate as minimizifigiv' — d*||* over
’ v'. The design matrix4 is an(n + e) x m matrix of scalars. The

over the vertex position¥ = {vi,...,vn},v: € R? and the first n rows of A are the barycentric coordinate vectadrs Each of
barycentric coordinate8 = {b4,...,b,},b; € |K| C R™. the trailinge rows contains 2 non-zero entries with valuga and
To solve this optimization problem (procedudmtimizeVertex- _\_/E in the c_olumns corresponding to the indices of the edge’s end-
Positions), our method alternates between two subproblems: points. :I'he flrsin_ rows of the least squares problem corrgspond to
Eait (K, V), while the laste rows correspond t@&.,ring (K, V).
1. For fixed vertex position¥’, find optimal barycentric coordi- An important feature of the matrix is that it contains at most 3
nate vectorsB by projection(procedureProjectPoints). non-zero entries in each row, for a total@f» + m) non-zero en-
2. For fixed barycentric coordinate vectdss find optimal vertex tries.
positionsV" by solving alinear least squares problem (proce- To solve the least squares problem, we use the conjugate gradient
durelmproveVertexPositions). method (cf. [3]). This is an iterative method guaranteed to find the

Because we find optimal solutions to both of these subproblems exact solution in as many iterations as there are distinct singular val-
E(K,V, B)canneverincrease, and since it is bounded from below,’ ues ofA,_|.e. In at mostn iterations. Usually far f‘?"Vef lterations

it must converge. In principle, one could iterate until some formal are requ_|red to get a result with zicceptable precision. For exam-
convergence criterion is met. Instead, as is common, we perform P'eﬁ.We f;nd that form as large ad0®, as few as 200 iterations are

a fixed number of iterations. As an example, Figure 7e shows the sufficient. ) _ _ _ ) )

result of optimizing the mesh of Figure 7c over the vertex positions ~ The two time-consuming operations in each iteration of the con-

while holding the simplicial complex fixed. jugate gradient algorithm are the multiplication by an(n + ¢)-
L - /
It is conceivable that procedur@ptimizeVertexPositions returns vector atr;]d thetmultlphcat_uon aft tl))y anm-\t/ecpor. Be?”SﬂV:/S
a setV” of vertices for which the mesh is self-intersecting, if&: is sFarsz,_ ese two ofperatli(})nts canbe execu exin+-m) Imeil’h e
not an embedding. While it is possible to checgosterioriwhether storeA in a sparse form that requires ordy(r + m) space. Thus,

¢v is an embedding, constraining the optimization to always pro- gn accept?_ble s?lutlor; 1o tthetlee_(st lsqua_:es [é)_roblerr:t:sdofbtalnfled n
duce an embedding appears to be difficult. This has not presented a. (n+m) time. In contrast, a typical noniterative method for solv-

problem in the examples we have run ing dense least squares problems, such as QR decomposition, would
' requireO((n + m)m?) time to find an exact solution.

4.1.1 Projection Subproblem 4.2 Optimization over Simplicial Complexes
(ProcedurerojectPoints) (ProceduredptimizeMesh)
The problem of optimizingf'( K, V, B) over the barycentric coor- To solve the outer minimization problem, minimizirfg( X') over
dinate vectorsB = {b, ..., b,}, while holding the vertex posi- K, we define a set of three elementary transformatieuge col-
tionsV = {vi,..., v} and the simplicial compleX constant, lapse edge split andedge swaptaking a simplicial compleX to
decomposes inta separate optimization problems: another simplicial compleX’ (see Figure 4).
b = argmin ||[x; — ¢v (b)|| We define degal moveto be the application of one of these el-
be|x| ementary transformations to an edgefofthat leaves the topolog-

ical type of K" unchanged. The set of elementary transformations
is complete in the sense thahy simplicial complex ink can be
obtained fromk, through a sequence of legal moves

A naive approach to computinlg; is to projectx; onto all of the Our goal then is to find such a sequence taking us frimto a
faces OfM, and then find the pI’OjeCtion with minimal distance. To minimum OfE(I() We do this using a variant of random descent:
speed up the projection, we first enter the faces of the mesh into a \ye randomly select a legal mové; = K. If FE(K") < BE(K),
spatial partitioning data structure (similar to the one used in [16]). we accept the move, otherwise we try again. If a large number of
Then for each poink; only a nearby subset of the faces needsto be  trias fails to produce an acceptable move, we terminate the search.
considered, and the projection step takes expected &fre). For M laborat lection stratedi h ‘ - ;
additional speedupwe exploit coherence betweeniterations. Instead . ore elaborate selection stralegies, such as steepest descent or
of projecting each point globally onto the mesh, we assume that a S|mulat_ed anne_allng, are possible. As we have obtained good re-
point’s projection lies in a neighborhood of its projection in the pre- .SUItS with the simple strategy .Of random descent, we have not yet
vious iteration. Specifically, we project the point onto all faces that implemented the other strategies.
share a vertex with the previous face. Although this is a heuristic
that can fail, it has performed well in practice.

In other wordsb; is the barycentric coordinate vector correspond-
ing to the pointp € ¢v (| K) closest tox;.

Identifying Legal Moves An edge split transformation is always
a legal move, as it can never change the topological typ& ofrhe
4.1.2 Linear Least Squares Subproblem other two transformations, on the other hand, can cause a change of
(ProceduremproveVertexPositions)

o ) - . . In fact, we prove in [6] that edge collapse and edge split are suffi-
Minimizing E( K, V, B) over the vertex positions” while holding cient; we include edge swap to allow the optimization procedure to “tunnel”
B andK fixedis a linear least squares problem. It decomposesinto through small hills in the energy function.
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Figure 4: Local simplicial complex transformations

topological type, so tests must be performed to determine if they are
legal moves.

We define an edg¢:, j} € K to be aboundary edgef it is a
subset of only one fac¢i, j,k} € K, and a vertex{:} to be a
boundary vertexf there exists a boundary edde, 5} € K.

An edge collapse transformatidii = K’ that collapsesthe edge
{i,7} € K is alegal move if and only if the following conditions
are satisfied (proof in [6]):

Figure 6: Two local optimizations to evaluate edge swap

Therefore, the heuristics never suggest changes that will increase
the true energy of the mesh.

Definition of neighborhoods in a simplicial complex To refer to

For all vertices|k} adjacent to botH:} and{y L,k e K g s IPUUS .
* S(k} ad i) {7} (i k) neighborhoods in a simplicial complex, we need to introduce some

and{y, k} € K), {1,7,k} is aface ofK.

o If {¢} and{ } are both boundary vertice$;, j} is a boundary
edge.

¢ K hasmore than 4 vertices if neithéi} nor{;} are boundary
vertices, or” has more than 3 vertices if eith¢i} or {5} are
boundary vertices.

An edge swap transformatioR’ = K’ that replaces the edge
{i,7} € K with {k,1} € K'isalegal move if and only i{ %, [} &
K.

further notation. We write’ < s to denote that simplex is a non-
empty subset of simplex For simplexs € K, stafs; K) = {s’ €
K : s <s'} (Figure 5).

Evaluation of Edge Collapse To evaluate a transformatioki =

K’ collapsing an edgés, 5} into a single verteXh} (Figure 4), we
take the submesh to be stéf}; £) U sta{;}; K'), and optimize
over the single vertex positiom;, while holding all other vertex

positions constant.

Because we perform only a small number of iterations (for rea-
sons of efficiency), the initial choice of, greatly influences the
The idealized algorithm described so far is too inefficient to be of accuracy of the result. Thertlefore, we attempt three optimizations,
practical use. In this section, we describe some heuristics which With v, starting atv;, v;, and(v: + v;), and accept the best one.
dramatically reduce the running time. These heuristics capitalize  The edge collapse should be allowed only if the new mesh does
on the fact that a local change in the structure of the mesh leaves thenot intersect itself. Checking for this would be costly; instead we
optimal positions of distant vertices essentially unchanged. settle for a less expensive heuristic check. If, after the local opti-
mization, the maximum dihedral angle of the edgesin(§ta}; K'*)
is greater than some threshold, the edge collapse is rejected.

4.3 Exploiting Locality

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our strategy for selecting legal moves requires evaluation of gyajyation of Edge Split The procedure is the same as for edge
E(K") = miny B(K”, V) for a simplicial complexk™ obtained  ¢o|japse, except that the submesh is defined to be &tai}; k),
from K through a legal move. Ideally, we would use proceddpe  gnd the initial value of the new vertex, is chosento bé (vitv;).
timizeVertexPositions of Section 4.1 for this purpose, as indicated in

Figure 3. In practice, however, this is too slow. Instead, we use fast
local _heuristics to estimate the effect of a legal move on the energy gy 51uation of Edge Swap To evaluate an edge swap transfor-
function. mation K = K’ that replaces an edgé:, ;1 € K with
Each of the heuristics is based on extracting a submesh in the{k,1} € K’, we consider two local optimizations, one with sub-
neighborhood of the transformation, along with the subset of the mesh staf{k}; K'), varying vertexv,, and one with submesh
data points projecting onto the submesh. The change in overall en-sta({/}; K'), varying vertexv; (Figure 6). The change in energy is
ergy is estimated by only considering the contribution of the sub- taken to best of these. As is the case in evaluating an edge collapse,
mesh and the corresponding point set. This estimate is always peswe reject the transformation if the maximum dihedral angle after the
simistic, as full optimization would only further reduce the energy. local optimization exceeds a threshold.
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4.3.2 Legal Move Selection Strategy Fig.[#vert[#faced #datd Parameter§  Resulting energies | time
(ProceduresenerateLegalMove) m n |erep]| K Faist | I (min.)

i i . ) 7c [1572] 3152| 4102 - -|8.57x1072 - -
The simple strategy for selecting legal moves described in Sec- |7¢ |1572| 3152| 4102[10-5| 10-2|8.04x10~* |4.84x1072| 1.

tion 4.2 can be improved by exploiting locality. Instead of selecting |7t | sos| 1024| 4102110-?] 10—2|6.84 x10—*|3.62 x10—2 (+3.0)
edgescompletely atrandom, edges are selected from acandidate set7g | 270 548| 4102/1075[10726.08 x10~*[6.94 x10~3 (+2.2)
This candidate set consists of all edges that may lead to beneficial|7h | 163| 334| 4102|1075 |varied|4.86 x10~%|2.12x10™3| 17.0
moves, and initially contains all edges. 7k [9220[18272[12745 - -|6.41x1072 - -

—5 |yari -3 —2

To generate a legal move, we randomly remove an edge from the 7! _| 690 1348]12745/107" varied|4.23 X107 11.18x10 47.0
candidate set. We first consider collapsing the edge, accepting the ;0 4059| 8073|16864) - ('12'20 X072 a :
move if it is legal and reduces the total energy. If the edge col- p | 262 S515]16864/1077|varied2.19 x107714.95 x10 4.5

: : 179 [2032] 3832 - - - - - -
!apse is not accepted, we then con5|d_er ed_ge swap and edge spli s | as7| 916| 6752/10-5 lvaried 1.86 x10—2 18.05 x10~2 99
in that order. If one of the transformations is accepted, we update 4l _3 s

. - ; ; ) t | 239| 432| 6752{10~*|varied9.19 x10~?|4.39 x10 10.2
the candidate set by adding all neighboring edges. The candidate
set becomes very useful toward the end of optimization, when the o o
fraction of beneficial moves diminishes. Table 1: Performance statistics for meshes shown in Figure 7.

4.4 Setting of the Spring Constant _ _

ure 7s). By setting,., = 10~*, we obtain a coarser mesh of 239
We view the spring energ¥.,-:»4 as aregularizing term that helps  vertices (Figure 7t).
guide the optimization processto a good minimum. The spring con-  ag these examples illustrate, basing mesh simplification on a

stantx determines the contribution of this term to the total energy. meagyre of distance between the simplified mesh and the original
We have obtained good results by making successive calls to proce-p 15 4 number of benefits:

dureOptimizeMesh, each with a different value of, according to a

schedule that gradually decreases e \ertices are dense in regions of high Gaussian curvature,
As an example, to obtain the final mesh in Figure 7h starting from whereas a few large faces span the flat regions.

the mesh in Figure 7c, we successively ggb 1072,1072,107*, e Long edges are aligned in directions of low curvature, and the

and10~® (see Figures 7f—=7h). This same schedule was used in all aspect ratios of the triangles adjust to local curvature.

the examples. e Edgesand vertices of the simplified mesh are placed near sharp

features of the original mesh.

5 Results 5.3 Segmentation

5.1 Surface Reconstruction Mesh optimization enables us to detect sharp features in the under-
lying surface. Using a simple thresholding method, the optimized
mesh can be segmented into smooth components. To this end, we
build a graph in which the nodes are the faces of mesh. Two nodes
of this graph are connected if the two corresponding faces are ad-
jacent and their dihedral angle is smaller than a given threshold.
The connected components of this graph identify the desired smooth
segments. As an example, Figure 7i shows the segmentation of the
Figures 7i-7k,7m-70 show two examples of surface reconstruc- optimized mesh into 11 components. After segmentation, vertex
tion from actual laser range data (courtesy of Technical Arts, Red- normals can be estimated from neighboring faces within each com-
mond, WA). Figures 7j and 7n show sets of points obtained by sam- ponent, and a smoothly shaded surface can be created (Figure 7m).
pling two physical objects (a distributor cap and a golf club head)
with alaser range finder. The outputs of phase one are showninFig-5 4 Parameter Settings and Performance Statistics
ures 7k and 70. The holes present in the surface of Figure 7k are ar-
tifacts of the data, as self-shadowing prevented some regions of theTable 1 lists the specific parameter valuescpf, and« used to
surface from being scanned. Adaptive selection of scanning paths generate the meshes in the examples, along with other performance
preventing such shadowing is an interesting area of future research statistics. In all these examples, the table efttgried” refers to
In this case, we manually filled the holes, leaving a single bound- a spring constant schedule ¢t0=>,107%,107*,107*}. In fact,
ary at the bottom. Figures 7| and 7p show the optimized meshes all meshes in Figure 1 are also created using the same parameters
obtained with our algorithm. (except that...,, was changed in two cases). Execution times were
obtained on a DEC uniprocessor Alpha workstation.

For mesh simplification, we first sample a set of points randomly 6 Related Work

from the original mesh using uniform random sampling over aréa. gface Fitting  There is a large body of literature on fitting em-
Next, we add the vertices of the mesh to this point set. Finally, beddings of a rectangular domain; see Bolle and Vemuri [1] for a
to more falthfully preserve the boundaries of the mesh, we sample oyiew. Schudy and Ballard [11, 12] fit embeddings of a sphere to
additional points from boundary edges. point data. Goshtasby [4] works with embeddings of cylinders and
As an example of mesh simplification, we start with the mesh tori. Sclaroff and Pentland [13] consider embeddings of a deformed
containing 2032 vertices shown in Figure 7q. From it, we obtain superquadric. Miller et al. [9] approximate an isosurface of volume
a sample of 6752 points shown in Figure 7r (4000 random points, data by fitting a mesh homeomorphic to a sphere. While it appears
2032 vertex points, and 720 boundary points). Mesh optimization, that their method could be extended to finding isosurfaces of arbi-
with ¢,., = 107°, reduces the mesh down to 487 vertices (Fig- trary topological type, it it less obvious how it could be modified to

From the set of points shown in Figure 7b, phase one of our re-
construction algorithm [5] produces the mesh shown in Figure 7c;
this mesh has the correct topological type, but it is rather dense, is
far away from the data, and lacks the sharp features of the origi-
nal model (Figure 7a). Using this mesh as a starting point, mesh
optimization produces the mesh in Figure 7h.

5.2 Mesh Simplification
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handle point instead of volume data. Mallet [7] discusses interpola-
tion of functions over simplicial complexes of arbitrary topological
type.

Our method allows fitting of a parametric surface of arbitrary
topological type to a set of three-dimensional points. In [2], we
sketched an algorithm for fitting a meshfdfedvertex connectivity
to the data. The algorithm presented here is an extension of this idea
in which we also allow the number of vertices and their connectivity
to vary. To the best of our knowledge, this has not been done before.

Mesh Simplification Two notable papers discussing the mesh

simplification problem are Schroeder et al. [10] and Turk [15]. ¢

The motivation of Schroeder et al. is to simplify meshes gener-
ated by “marching cubes” that may consist of more than a million

triangles. In their iterative approach, the basic operation is removal ®

of a vertex and re-triangulation of the hole thus created. The crite-
rion for vertex removal in the simplest case (interior vertex not on
edge or corner) is the distance from the vertex to the plane approx-
imating its surrounding vertices. It is worthwhile noting that this
criterion only considers deviation of the new mesh from the mesh
created in the previous iteration; deviation from the original mesh (1]
does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while re-
maining faithful to the original topology and geometry. His basic [3]
idea is to distribute points on the existing mesh that are to become
the new vertices. He then creates a triangulation containing both old [4]
and new vertices, and finally removes the old vertices. The density
of the new vertices is chosen to be higher in areas of high curvature. [5]

The principal advantage of our mesh simplification method com-
pared to the techniques mentioned above is that we cast mesh sim-[G]
plification as an optimization problem: we find a new mesh of lower
complexity that is as close as possible to the original mesh. This is
recognized as a desirable property by Turk (Section 8, p. 63): “An- 7]
other topic is finding measures of how closely matched a given re-
tiling is to the original model. Can such a quality measure be used g
to guide the re-tiling process?”. Optimization automatically retains
more vertices in areas of high curvature, and leads to faces that are
elongated along directions of low curvature, another property rec- [9]
ognized as desirable by Turk.

(2]

7 Summary and Future Work

We have described an energy minimization approach to solving the
mesh optimization problem. The energy function we use consists of 11]
three terms: a distance energy that measures the closeness of fit, a
representation energy that penalizes meshes with a large number of
vertices, and a regularizing term that conceptually places springs of[12]
rest length zero on the edges of the mesh. Our minimization algo-
rithm partitions the problem into two nested subproblems: an inner
continuous minimization and an outer discrete minimization. The
search space consists of all meshes homeomorphic to the startind13]
mesh.

(10]

Mesh optimization has proven effective as the second phase of 14
our method for surface reconstruction from unorganized points, as|ys)
discussed in [5]. (Phase two is responsible for improving the geo-
metric fit and reducing the number of vertices of the mesh produced ;6
in phase one.)

Our method has also performed well for mesh simplification, that
is, the reduction of the number of vertices in a dense triangular mesh.
It produces meshes whose edges align themselves along directions
of low curvature, and whose vertices concentrate in areas of high
Gaussian curvature. Because the energy does not penalize surfaces
with sharp dihedral angles, the method can recover sharp edges and
corners.
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A number of areas of future research still remain, including:

¢ Investigate the use of more sophisticated optimization meth-

ods, such as simulated annealing for discrete optimization and
quadratic methods for non-linear least squares optimization, in
order to avoid undesirable local minima in the energy and to

accelerate convergence.

e Gain more insight into the use of the spring energy as a regu-

larizing term, especially in the presence of appreciable noise.

Improve the speed of the algorithm and investigate implemen-
tations on parallel architectures.

Develop methods for fitting higher order splines to more accu-
rately and concisely model curved surfaces.

Experiment with sparse, non-uniform, and noisy data.

Extend the current algorithm to other distance measures such
as maximum error{>> norm) or average errof{ norm), in-
stead of the current? norm.
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Figure 7: Examples of surface reconstruction and mesh simplification.



