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Abstract
We present a method for solving the following problem: Given a set
of data points scattered in three dimensions and an initial triangular
meshM0, produce a meshM , of the same topological type asM0,
that fits the data well and has a small number of vertices. Our ap-
proach is to minimize an energy function that explicitly models the
competing desires of conciseness of representation and fidelity to
the data. We show that mesh optimization can be effectively used
in at least two applications: surface reconstruction from unorga-
nized points, and mesh simplification (the reduction of the number
of vertices in an initially dense mesh of triangles).

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting,
Three-Dimensional Shape Recovery, Range Data Analysis, Model
Simplification.

1 Introduction
The mesh optimizationproblem considered in this paper can be
roughly stated as follows: Given a collection of data pointsX in
R3 and an initial triangular meshM0 near the data, find a meshM
of the same topological type asM0 that fits the data well and has a
small number of vertices.

As an example, Figure 7b showsa set of 4102data points sampled
from the object shown in Figure 7a. The input to the mesh optimiza-
tion algorithm consists of the points together with the initial mesh
shown in Figure 7c. The optimized mesh is shown in Figure 7h.
Notice that the sharp edges and corners indicated by the data have
been faithfully recovered and that the number of vertices has been
significantly reduced (from 1572 to 163).
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To solve the mesh optimization problem we minimize anenergy
function that captures the competing desires of tight geometric fit
and compact representation. The tradeoff between geometric fit and
compact representation is controlled via a user-selectable parameter
crep. A large value ofcrep indicates that a sparse representation is
to be strongly preferred over a dense one, usually at the expense of
degrading the fit.

We use the input meshM0 as a starting point for a non-linear
optimization process. During the optimization we vary the number
of vertices, their positions, and their connectivity. Although we can
give no guarantee of finding a global minimum, we have run the
method on a wide variety of data sets; the method has produced
good results in all cases (see Figure 1).

We see at least two applications of mesh optimization: surface
reconstruction and mesh simplification.

The problem of surface reconstruction from sampled data occurs
in many scientific and engineering applications. In [2], we outlined
a two phase procedure for reconstructing a surface from a set of un-
organized data points. The goal of phase one is to determine the
topological type of the unknown surface and to obtain a crude es-
timate of its geometry. An algorithm for phase one was described
in [5]. The goal of phase two is to improve the fit and reduce the
number of faces. Mesh optimization can be used for this purpose.

Although we were originally led to consider the mesh optimiza-
tion problem by our research on surface reconstruction, the algo-
rithm we have developed canalso be applied to the problem of mesh
simplification. Mesh simplification, as considered by Turk [15] and
Schroederet al. [10], refers to the problem of reducing the number of
faces in a dense mesh while minimally perturbing the shape. Mesh
optimization can be used to solve this problem as follows: sample
data pointsX from the initial mesh and use the initial mesh as the
starting pointM0 of the optimization procedure. For instance, Fig-
ure 7q shows a triangular approximation of a minimal surface with
2032 vertices. Application of our mesh optimization algorithm to
a sample of 6752 points (Figure 7r) from this mesh produces the
meshes shown in Figures 7s (487 vertices) and 7t (239 vertices).
The mesh of Figure 7s corresponds to a relatively small value of
crep, and therefore has more vertices than the mesh of Figure 7t
which corresponds to a somewhat larger value ofcrep.

The principal contributions of this paper are:

� It presents an algorithm for fitting a mesh of arbitrary topolog-
ical type to a set of data points (as opposed to volume data,
etc.). During the fitting process, the number and connectivity
of the vertices, as well as their positions, are allowed to vary.

� It casts mesh simplification as an optimization problem with
an energy function that directly measures deviation of the fi-
nal mesh from the original. As a consequence, the final mesh
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Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshesM0; the meshes in the bottom row are the
corresponding optimized meshes. The first 3 columns are reconstructions; the last 2 columns are simplifications.
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Figure 2: Example of mesh representation: a mesh consisting of a
single face.

naturally adapts to curvature variations in the original mesh.

� It demonstrates how the algorithm’s ability to recover sharp
edges and corners can be exploited to automatically segment
the final mesh into smooth connected components (see Fig-
ure 7i).

2 Mesh Representation
Intuitively, ameshis a piecewise linear surface, consisting of trian-
gular faces pasted together along their edges. For our purposes it
is important to maintain the distinction between the connectivity of
the vertices and their geometric positions. Formally, a meshM is
a pair(K;V ), where:K is a simplicial complexrepresenting the
connectivity of the vertices, edges, and faces, thus determining the
topological type of the mesh;V = fv1; : : : ;vmg, vi 2 R3 is
a set of vertex positions defining the shape of the mesh inR3 (its
geometric realization).

A simplicial complexK consists of a set of verticesf1; : : : ;mg,
together with a set of non-empty subsets of the vertices, called the

simplices ofK, such that any set consisting of exactly one vertex is
a simplex inK, and every non-empty subset of a simplex inK is
again a simplex inK (cf. Spanier [14]). The 0-simplicesfig 2 K
are called vertices, the 1-simplicesfi; jg 2 K are called edges, and
the 2-simplicesfi; j; kg 2 K are called faces.

A geometric realization of a mesh as a surface inR3 can be
obtained as follows. For a given simplicial complexK, form
its topological realizationjKj in Rm by identifying the vertices
f1; : : : ;mg with the standard basis vectorsfe1; : : : ;emg of Rm.
For each simplexs 2 K let jsj denote the convexhull of its vertices
in Rm, and letjKj = [s2K jsj. Let� : Rm ! R3 be the linear
map that sends thei-th standard basis vectorei 2 Rm tovi 2 R3

(see Figure 2).

Thegeometric realizationofM is the image�V (jKj), where we
write the map as�V to emphasize that it is fully specified by the
set of vertex positionsV = fv1; : : : ;vmg. The map�V is called
anembeddingif it is 1-1, that is if�V (jKj) is not self-intersecting.
Only a restricted set of vertex positionsV result in�V being an
embedding.

If �V is an embedding, any pointp 2 �V (jKj) can be parame-
terized by finding its unique pre-image onjKj. The vectorb 2 jKj
with p = �V (b) is called thebarycentric coordinate vectorof p
(with respect to the simplicial complexK). Note that barycentric
coordinate vectors are convex combinations of standard basis vec-
torsei 2 Rm corresponding to the vertices of a face ofK. Any
barycentric coordinate vector has at most three non-zero entries; it
has only two non-zero entries if it lies on an edge ofjKj, and only
one if it is a vertex.

3 Definition of the Energy Function
Recall that the goal of mesh optimization is to obtain a mesh that
provides a good fit to the point setX and has a small number of
vertices. We find a simplicial complexK and a set of vertex posi-
tionsV defining a meshM = (K;V ) that minimizes the energy
function

E(K;V ) = Edist(K;V ) + Erep(K) +Espring(K;V ):

The first two terms correspond to the two stated goals; the third term
is motivated below.
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The distanceenergyEdist is equal to the sum of squareddistances
from the pointsX = fx1; : : : ;xng to the mesh,

Edist(K;V ) =

nX

i=1

d
2
(xi; �V (jKj)):

The representation energyErep penalizes meshes with a large
number of vertices. It is set to be proportional to the number of
verticesm of K:

Erep(K) = crepm:

The optimization allows vertices to be both added to and removed
from the mesh. When a vertex is added, the distance energyEdist

is likely to be reduced; the termErep makes this operation incur
a penalty so that vertices are not added indefinitely. Similarly, one
wants to remove vertices from a dense mesh even ifEdist increases
slightly; in this caseErep acts to encourage the vertex removal. The
user-specified parametercrep provides a controllable trade-off be-
tween fidelity of geometric fit and parsimony of representation.

We discovered, as others have before us [8], that minimizing
Edist + Erep does not produce the desired results. As an illus-
tration of what can go wrong, Figure 7d shows the result of min-
imizing Edist alone. The estimated surface has several spikes in
regions where there is no data. These spikes are a manifestation of
the fundamental problem that a minimum ofEdist +Erep may not
exist.

To guarantee the existence of a minimum [6], we add the third
term, the spring energyEspring. It places on each edge of the mesh
a spring of rest length zero and spring constant�:

Espring(K;V ) =
X

fj;kg2K

�kvj � vkk2

It is worthwhile emphasizing that the spring energy is not a
smoothness penalty. Our intent is not to penalize sharp dihedral
angles in the mesh, since such features may be present in the un-
derlying surface and should be recovered. We viewEspring as a
regularizing term that helps guide the optimization to a desirable
local minimum. As the optimization converges to the solution, the
magnitude ofEspring can be gradually reduced. We return to this
issue in Section 4.4.

For some applications we want the procedure to be scale-
invariant, which is equivalent to defining a unitless energy function
E. To achieve invariance under Euclideanmotion and uniform scal-
ing, the pointsX and the initial meshM0 are pre-scaled uniformly
to fit in a unit cube. After optimization, a post-processing step can
undo this initial transformation.

4 Minimization of the Energy Function
Our goal is to minimize the energy function

E(K;V ) = Edist(K;V ) + Erep(K) + Espring(K;V )

over the setK of simplicial complexesK homeomorphic to the ini-
tial simplicial complexK0, and the vertex positions V defining the
embedding. We now present an outline of our optimization algo-
rithm, a pseudo-code version of which appears in Figure 3. The
details are deferred to the next two subsections.

To minimizeE(K;V ) over bothK andV , we partition the prob-
lem into two nested subproblems: an inner minimization overV for
fixed simplicial complexK, and a outer minimization overK.

In Section 4.1 we describe an algorithm that solves the inner min-
imization problem. It findsE(K) = minV E(K;V ), the energy

OptimizeMesh(K0,V0) f
K := K0

V := OptimizeVertexPositions(K0 ,V0)

– Solve the outer minimization problem.
repeatf

(K 0,V 0) := GenerateLegalMove(K,V )
V 0 = OptimizeVertexPositions(K 0,V 0)
if E(K 0; V 0) < E(K;V ) then

(K,V ) := (K 0,V 0)
endif

g until convergence
return (K,V )

g
– Solve the inner optimization problem
– E(K) = minV E(K;V )
– for fixed simplicial complexK.
OptimizeVertexPositions(K,V ) f

repeatf
– Compute barycentric coordinates by projection.
B := ProjectPoints(K,V )
– MinimizeE(K;V; B) overV using conjugate gradients.
V := ImproveVertexPositions(K,B)

g until convergence
returnV

g
GenerateLegalMove(K,V ) f

Select a legal moveK ) K 0.
Locally modifyV to obtainV 0 appropriate forK 0.
return (K 0,V 0)

g

Figure 3: An idealized pseudo-code version of the minimization
algorithm.

of the best possible embedding of the fixed simplicial complexK,
and the corresponding vertex positionsV , given an initial guess for
V . This corresponds to the procedureOptimizeVertexPositions in
Figure 3.

Whereas the inner minimization is a continuous optimization
problem, the outer minimization ofE(K) over the simplicial com-
plexesK 2 K (procedureOptimizeMesh) is a discrete optimization
problem. An algorithm for its solution is presented in Section 4.2.

The energy functionE(K;V ) depends on two parameterscrep
and�. The parametercrep controls the tradeoff between concise-
ness and fidelity to the data and should be set by the user. The pa-
rameter�, on the other hand, is a regularizing parameter that, ide-
ally, would be chosen automatically. Our method of setting� is
described in Section 4.4.

4.1 Optimization for Fixed Simplicial Complex
(ProcedureOptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex
positionsV that minimizes the energy functionE(K;V ) for a given
simplicial complexK. As Erep(K) does not depend onV , this
amounts to minimizingEdist(K;V ) +Espring(K;V ).

To evaluate the distance energyEdist(K;V ), it is necessary to
compute the distance of each data pointxi toM = �V (jKj). Each
of these distances is itself the solution to the minimization problem

d
2
(xi; �V (jKj)) = min

bi2jKj

kxi � �V (bi)k2;

in which the unknown is the barycentric coordinate vectorbi 2
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jKj � Rm of the projection ofxi ontoM . Thus, minimizing
E(K;V ) for fixedK is equivalent to minimizing the new objective
function

E(K;V; B) =

nX

i=1

kxi � �V (bi)k2 +Espring(K;V )

=

nX

i=1

kxi � �V (bi)k2 +
X

fj;kg2K

�kvj � vkk2

over the vertex positionsV = fv1; : : : ;vmg; vi 2 R3 and the
barycentric coordinatesB = fb1; : : : ;bng;bi 2 jKj � Rm.

To solve this optimization problem (procedureOptimizeVertex-
Positions), our method alternates between two subproblems:

1. For fixed vertex positionsV , find optimal barycentric coordi-
nate vectorsB by projection(procedureProjectPoints).

2. For fixed barycentric coordinate vectorsB, find optimal vertex
positionsV by solving alinear least squares problem (proce-
dureImproveVertexPositions).

Because we find optimal solutions to both of these subproblems,
E(K;V; B) can never increase, and since it is bounded from below,
it must converge. In principle, one could iterate until some formal
convergence criterion is met. Instead, as is common, we perform
a fixed number of iterations. As an example, Figure 7e shows the
result of optimizing the mesh of Figure 7c over the vertex positions
while holding the simplicial complex fixed.

It is conceivable that procedureOptimizeVertexPositions returns
a setV of vertices for which the mesh is self-intersecting, i.e.�V is
not an embedding. While it is possible to checka posterioriwhether
�V is an embedding, constraining the optimization to always pro-
duce an embedding appears to be difficult. This has not presented a
problem in the examples we have run.

4.1.1 Projection Subproblem
(ProcedureProjectPoints)

The problem of optimizingE(K;V; B) over the barycentric coor-
dinate vectorsB = fb1; : : : ;bng, while holding the vertex posi-
tionsV = fv1; : : : ;vmg and the simplicial complexK constant,
decomposes inton separate optimization problems:

bi = argmin
b2jKj

kxi � �V (b)k

In other words,bi is the barycentric coordinate vector correspond-
ing to the pointp 2 �V (jKj) closest toxi.

A naive approach to computingbi is to projectxi onto all of the
faces ofM , and then find the projection with minimal distance. To
speed up the projection, we first enter the faces of the mesh into a
spatial partitioning data structure (similar to the one used in [16]).
Then for each pointxi only a nearby subset of the faces needs to be
considered, and the projection step takes expected timeO(n). For
additional speedupwe exploit coherencebetween iterations. Instead
of projecting each point globally onto the mesh, we assume that a
point’s projection lies in a neighborhood of its projection in the pre-
vious iteration. Specifically, we project the point onto all faces that
share a vertex with the previous face. Although this is a heuristic
that can fail, it has performed well in practice.

4.1.2 Linear Least Squares Subproblem
(ProcedureImproveVertexPositions)

Minimizing E(K;V; B) over the vertex positionsV while holding
B andK fixed is a linear least squares problem. It decomposes into

three independent subproblems, one for each of the three coordi-
nates of the vertex positions. We will write down the problem for
the first coordinate.

Let e be the number of edges (1-simplices) inK; note thate is
O(m). Letv1 be them-vector whosei-th element is the first coor-
dinate ofvi. Letd1 be the(n+e)-vector whosefirstn elements are
the first coordinates of the data pointsxi, and whose laste elements
are zero. With these definitions we can express the least squares
problem for the first coordinate as minimizingkAv1 � d1k2 over
v1. The design matrixA is an(n+ e)�m matrix of scalars. The
firstn rows ofA are the barycentric coordinate vectorsbi. Each of
the trailinge rows contains 2 non-zero entries with values

p
� and

�p� in the columns corresponding to the indices of the edge’s end-
points. The firstn rows of the least squares problem correspond to
Edist(K;V ), while the laste rows correspond toEspring(K;V ).
An important feature of the matrixA is that it contains at most 3
non-zero entries in each row, for a total ofO(n+m) non-zero en-
tries.

To solve the least squaresproblem, we use the conjugate gradient
method (cf. [3]). This is an iterative method guaranteed to find the
exact solution in as many iterations as there are distinct singular val-
ues ofA, i.e. in at mostm iterations. Usually far fewer iterations
are required to get a result with acceptable precision. For exam-
ple, we find that form as large as104, as few as 200 iterations are
sufficient.

The two time-consuming operations in each iteration of the con-
jugate gradient algorithm are the multiplication ofA by an(n+ e)-
vector and the multiplication ofAT by anm-vector. BecauseA is
sparse, these two operations can be executed inO(n+m) time. We
storeA in a sparse form that requires onlyO(n+m) space. Thus,
an acceptable solution to the least squares problem is obtained in
O(n+m) time. In contrast, a typical noniterative method for solv-
ing dense least squaresproblems, such as QR decomposition, would
requireO((n+m)m2) time to find an exact solution.

4.2 Optimization over Simplicial Complexes
(ProcedureOptimizeMesh)

To solve the outer minimization problem, minimizingE(K) over
K, we define a set of three elementary transformations,edge col-
lapse, edge split, andedge swap, taking a simplicial complexK to
another simplicial complexK 0 (see Figure 4).

We define alegal moveto be the application of one of these el-
ementary transformations to an edge ofK that leaves the topolog-
ical type ofK unchanged. The set of elementary transformations
is complete in the sense thatany simplicial complex inK can be
obtained fromK0 through a sequence of legal moves1.

Our goal then is to find such a sequence taking us fromK0 to a
minimum ofE(K). We do this using a variant of random descent:
we randomly select a legal move,K ) K 0. If E(K 0) < E(K),
we accept the move, otherwise we try again. If a large number of
trials fails to produce an acceptable move, we terminate the search.

More elaborate selection strategies, such as steepest descent or
simulated annealing, are possible. As we have obtained good re-
sults with the simple strategy of random descent, we have not yet
implemented the other strategies.

Identifying Legal Moves An edge split transformation is always
a legal move, as it can never change the topological type ofK. The
other two transformations, on the other hand, can cause a change of

1In fact, we prove in [6] that edge collapse and edge split are suffi-
cient; we include edge swap to allow the optimization procedure to “tunnel”
through small hills in the energy function.
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Figure 4: Local simplicial complex transformations

topological type, so tests must be performed to determine if they are
legal moves.

We define an edgefi; jg 2 K to be aboundary edgeif it is a
subset of only one facefi; j; kg 2 K, and a vertexfig to be a
boundary vertexif there exists a boundary edgefi; jg 2 K.

An edgecollapse transformationK ) K 0 that collapses the edge
fi; jg 2 K is a legal move if and only if the following conditions
are satisfied (proof in [6]):

� For all verticesfkg adjacent to bothfig andfjg (fi; kg 2 K

andfj; kg 2 K), fi; j; kg is a face ofK.

� If fig andfjg are both boundary vertices,fi; jg is a boundary
edge.

� K has more than 4 vertices if neitherfig norfjg are boundary
vertices, orK has more than 3 vertices if eitherfig or fjg are
boundary vertices.

An edge swap transformationK ) K 0 that replaces the edge
fi; jg 2 K with fk; lg 2 K 0 is a legal move if and only iffk; lg 62
K.

4.3 Exploiting Locality

The idealized algorithm described so far is too inefficient to be of
practical use. In this section, we describe some heuristics which
dramatically reduce the running time. These heuristics capitalize
on the fact that a local change in the structure of the mesh leaves the
optimal positions of distant vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our strategy for selecting legal moves requires evaluation of
E(K 0) = minV E(K 0; V ) for a simplicial complexK 0 obtained
fromK through a legal move. Ideally, we would use procedureOp-
timizeVertexPositions of Section 4.1 for this purpose, as indicated in
Figure 3. In practice, however, this is too slow. Instead, we use fast
local heuristics to estimate the effect of a legal move on the energy
function.

Each of the heuristics is based on extracting a submesh in the
neighborhood of the transformation, along with the subset of the
data points projecting onto the submesh. The change in overall en-
ergy is estimated by only considering the contribution of the sub-
mesh and the corresponding point set. This estimate is always pes-
simistic, as full optimization would only further reduce the energy.

s star{s,K} t star{t,K}

Figure 5: Neighborhood subsets ofK.
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j
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Figure 6: Two local optimizations to evaluate edge swap

Therefore, the heuristics never suggest changes that will increase
the true energy of the mesh.

Definition of neighborhoods in a simplicial complex To refer to
neighborhoods in a simplicial complex, we need to introduce some
further notation. We writes0 � s to denote that simplexs0 is a non-
empty subset of simplexs. For simplexs 2 K, star(s;K) = fs0 2
K : s � s0g (Figure 5).

Evaluation of Edge Collapse To evaluate a transformationK )
K 0 collapsing an edgefi; jg into a single vertexfhg (Figure 4), we
take the submesh to be star(fig;K) [ star(fjg;K), and optimize
over the single vertex positionvh while holding all other vertex
positions constant.

Because we perform only a small number of iterations (for rea-
sons of efficiency), the initial choice ofvh greatly influences the
accuracy of the result. Therefore, we attempt three optimizations,
with vh starting atvi, vj, and1

2
(vi+vj), and accept the best one.

The edge collapse should be allowed only if the new mesh does
not intersect itself. Checking for this would be costly; instead we
settle for a less expensive heuristic check. If, after the local opti-
mization, the maximum dihedral angleof the edgesin star(fhg;K 0)
is greater than some threshold, the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge
collapse, except that the submesh is defined to be star(fi; jg;K),
and the initial value of the new vertexvh is chosen to be1

2
(vi+vj).

Evaluation of Edge Swap To evaluate an edge swap transfor-
mation K ) K 0 that replaces an edgefi; jg 2 K with
fk; lg 2 K 0, we consider two local optimizations, one with sub-
mesh star(fkg;K 0), varying vertexvk, and one with submesh
star(flg;K 0), varying vertexvl (Figure 6). The change in energy is
taken to best of these. As is the case in evaluating an edge collapse,
we reject the transformation if the maximum dihedral angle after the
local optimization exceeds a threshold.
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4.3.2 Legal Move Selection Strategy
(ProcedureGenerateLegalMove)

The simple strategy for selecting legal moves described in Sec-
tion 4.2 can be improved by exploiting locality. Instead of selecting
edgescompletely at random, edgesare selected from a candidateset.
This candidate set consists of all edges that may lead to beneficial
moves, and initially contains all edges.

To generate a legal move, we randomly remove an edge from the
candidate set. We first consider collapsing the edge, accepting the
move if it is legal and reduces the total energy. If the edge col-
lapse is not accepted, we then consider edge swap and edge split
in that order. If one of the transformations is accepted, we update
the candidate set by adding all neighboring edges. The candidate
set becomes very useful toward the end of optimization, when the
fraction of beneficial moves diminishes.

4.4 Setting of the Spring Constant

We view the spring energyEspring as a regularizing term that helps
guide the optimization process to a good minimum. The spring con-
stant� determines the contribution of this term to the total energy.
We have obtained good results by making successive calls to proce-
dureOptimizeMesh, each with a different value of�, according to a
schedule that gradually decreases�.

As an example, to obtain the final mesh in Figure 7h starting from
the mesh in Figure 7c, we successively set� to 10�2; 10�3; 10�4,
and10�8 (see Figures 7f–7h). This same schedule was used in all
the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 7b, phase one of our re-
construction algorithm [5] produces the mesh shown in Figure 7c;
this mesh has the correct topological type, but it is rather dense, is
far away from the data, and lacks the sharp features of the origi-
nal model (Figure 7a). Using this mesh as a starting point, mesh
optimization produces the mesh in Figure 7h.

Figures 7i–7k,7m–7o show two examples of surface reconstruc-
tion from actual laser range data (courtesy of Technical Arts, Red-
mond, WA). Figures 7j and 7n show sets of points obtained by sam-
pling two physical objects (a distributor cap and a golf club head)
with a laser range finder. The outputs of phase one are shown in Fig-
ures 7k and 7o. The holes present in the surface of Figure 7k are ar-
tifacts of the data, as self-shadowing prevented some regions of the
surface from being scanned. Adaptive selection of scanning paths
preventing such shadowing is an interesting area of future research.
In this case, we manually filled the holes, leaving a single bound-
ary at the bottom. Figures 7l and 7p show the optimized meshes
obtained with our algorithm.

5.2 Mesh Simplification

For mesh simplification, we first sample a set of points randomly
from the original mesh using uniform random sampling over area.
Next, we add the vertices of the mesh to this point set. Finally,
to more faithfully preserve the boundaries of the mesh, we sample
additional points from boundary edges.

As an example of mesh simplification, we start with the mesh
containing 2032 vertices shown in Figure 7q. From it, we obtain
a sample of 6752 points shown in Figure 7r (4000 random points,
2032 vertex points, and 720 boundary points). Mesh optimization,
with crep = 10�5, reduces the mesh down to 487 vertices (Fig-

Fig. #vert. #faces #data Parameters Resulting energies time
m n crep � Edist E (min.)

7c 1572 3152 4102 - - 8:57�10�2 - -
7e 1572 3152 4102 10�5 10�2 8:04�10�4 4:84�10�2 1:5

7f 508 1024 4102 10�5 10�2 6:84�10�4 3:62�10�2 (+3:0)

7g 270 548 4102 10�5 10�3 6:08�10�4 6:94�10�3 (+2:2)

7h 163 334 4102 10�5 varied 4:86�10�4 2:12�10�3 17:0

7k 9220 18272 12745 - - 6:41�10�2 - -
7l 690 1348 12745 10�5 varied 4:23�10�3 1:18�10�2 47:0

7o 4059 8073 16864 - - 2:20�10�2 - -
7p 262 515 16864 10�5 varied 2:19�10�3 4:95�10�3 44:5

7q 2032 3832 - - - - - -
7s 487 916 6752 10�5 varied 1:86�10�3 8:05�10�3 9:9

7t 239 432 6752 10�4 varied 9:19�10�3 4:39�10�2 10:2

Table 1: Performance statistics for meshes shown in Figure 7.

ure 7s). By settingcrep = 10�4, we obtain a coarser mesh of 239
vertices (Figure 7t).

As these examples illustrate, basing mesh simplification on a
measure of distance between the simplified mesh and the original
has a number of benefits:

� Vertices are dense in regions of high Gaussian curvature,
whereas a few large faces span the flat regions.

� Long edges are aligned in directions of low curvature, and the
aspect ratios of the triangles adjust to local curvature.

� Edgesand vertices of the simplified mesh are placed near sharp
features of the original mesh.

5.3 Segmentation

Mesh optimization enables us to detect sharp features in the under-
lying surface. Using a simple thresholding method, the optimized
mesh can be segmented into smooth components. To this end, we
build a graph in which the nodes are the faces of mesh. Two nodes
of this graph are connected if the two corresponding faces are ad-
jacent and their dihedral angle is smaller than a given threshold.
The connectedcomponentsof this graph identify the desired smooth
segments. As an example, Figure 7i shows the segmentation of the
optimized mesh into 11 components. After segmentation, vertex
normals can be estimated from neighboring faces within each com-
ponent, and a smoothly shaded surface can be created (Figure 7m).

5.4 Parameter Settings and Performance Statistics

Table 1 lists the specific parameter values ofcrep and� used to
generate the meshes in the examples, along with other performance
statistics. In all these examples, the table entry“varied” refers to
a spring constant schedule off10�2; 10�3; 10�4; 10�8g. In fact,
all meshes in Figure 1 are also created using the same parameters
(except thatcrep was changed in two cases). Execution times were
obtained on a DEC uniprocessor Alpha workstation.

6 Related Work
Surface Fitting There is a large body of literature on fitting em-
beddings of a rectangular domain; see Bolle and Vemuri [1] for a
review. Schudy and Ballard [11, 12] fit embeddings of a sphere to
point data. Goshtasby [4] works with embeddings of cylinders and
tori. Sclaroff and Pentland [13] consider embeddingsof a deformed
superquadric. Miller et al. [9] approximate an isosurface of volume
data by fitting a mesh homeomorphic to a sphere. While it appears
that their method could be extended to finding isosurfaces of arbi-
trary topological type, it it less obvious how it could be modified to
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handle point instead of volume data. Mallet [7] discusses interpola-
tion of functions over simplicial complexes of arbitrary topological
type.

Our method allows fitting of a parametric surface of arbitrary
topological type to a set of three-dimensional points. In [2], we
sketched an algorithm for fitting a mesh offixedvertex connectivity
to the data. The algorithm presentedhere is an extensionof this idea
in which we also allow the number of vertices and their connectivity
to vary. To the best of our knowledge, this has not been done before.

Mesh Simplification Two notable papers discussing the mesh
simplification problem are Schroeder et al. [10] and Turk [15].

The motivation of Schroeder et al. is to simplify meshes gener-
ated by “marching cubes” that may consist of more than a million
triangles. In their iterative approach, the basic operation is removal
of a vertex and re-triangulation of the hole thus created. The crite-
rion for vertex removal in the simplest case (interior vertex not on
edge or corner) is the distance from the vertex to the plane approx-
imating its surrounding vertices. It is worthwhile noting that this
criterion only considers deviation of the new mesh from the mesh
created in the previous iteration; deviation from the original mesh
does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while re-
maining faithful to the original topology and geometry. His basic
idea is to distribute points on the existing mesh that are to become
the new vertices. He then createsa triangulation containing both old
and new vertices, and finally removes the old vertices. The density
of the new vertices is chosen to be higher in areas of high curvature.

The principal advantage of our mesh simplification method com-
pared to the techniques mentioned above is that we cast mesh sim-
plification as an optimization problem: we find a new mesh of lower
complexity that is as close as possible to the original mesh. This is
recognized as a desirable property by Turk (Section 8, p. 63): “An-
other topic is finding measures of how closely matched a given re-
tiling is to the original model. Can such a quality measure be used
to guide the re-tiling process?”. Optimization automatically retains
more vertices in areas of high curvature, and leads to faces that are
elongated along directions of low curvature, another property rec-
ognized as desirable by Turk.

7 Summary and Future Work
We have described an energy minimization approach to solving the
mesh optimization problem. The energy function we use consists of
three terms: a distance energy that measures the closeness of fit, a
representation energy that penalizes meshes with a large number of
vertices, and a regularizing term that conceptually places springs of
rest length zero on the edges of the mesh. Our minimization algo-
rithm partitions the problem into two nested subproblems: an inner
continuous minimization and an outer discrete minimization. The
search space consists of all meshes homeomorphic to the starting
mesh.

Mesh optimization has proven effective as the second phase of
our method for surface reconstruction from unorganized points, as
discussed in [5]. (Phase two is responsible for improving the geo-
metric fit and reducing the number of vertices of the mesh produced
in phase one.)

Our method has also performed well for mesh simplification, that
is, the reduction of the number of vertices in a dense triangular mesh.
It produces meshes whose edges align themselves along directions
of low curvature, and whose vertices concentrate in areas of high
Gaussian curvature. Because the energy does not penalize surfaces
with sharp dihedral angles, the method can recover sharp edges and
corners.

A number of areas of future research still remain, including:

� Investigate the use of more sophisticated optimization meth-
ods, such as simulated annealing for discrete optimization and
quadratic methods for non-linear least squares optimization, in
order to avoid undesirable local minima in the energy and to
accelerate convergence.

� Gain more insight into the use of the spring energy as a regu-
larizing term, especially in the presence of appreciable noise.

� Improve the speed of the algorithm and investigate implemen-
tations on parallel architectures.

� Develop methods for fitting higher order splines to more accu-
rately and concisely model curved surfaces.

� Experiment with sparse, non-uniform, and noisy data.

� Extend the current algorithm to other distance measures such
as maximum error (L1 norm) or average error (L1 norm), in-
stead of the currentL2 norm.
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(a) Object to be sampled (b) Sampled points X (n = 4102) (c) Output of phase one (M0) (d) Optimization without Espring

(e) Optimum for fixed K0 (f) Optimum with � = 10�2 (g) Optimum with � = 10�3 (h) Final optimum with � = 10�8

(i) Segmented surface (11 comp.) (j) Laser range data (n = 12� 745) (k) Output of phase one (l) Output of phase two

(m) Smooth shading from segments (n) Laser range data (n = 16� 864) (o) Output of phase one (p) Output of phase two

(q) Original mesh M0 (r) Sampled points X (n = 6752) (s) Simplified mesh (crep = 10�5) (t) Simplified mesh (crep = 10�4)

Figure 7: Examples of surface reconstruction and mesh simplification.


