Mesh Simplification and - Measures of Error \qquad
\qquad
Erica Schwarz - Group \#12

Today's Papers
Mesh Simplification:
Hoppe, Hugues, et al. "Mesh optimization." Proceedings of the 20th annual conference on Computer graphics and interactive techniques. ACM, 1993.

Measure of Error:
Aspert, Nicolas, Diego Santa Cruz, and Touradj Ebrahimi. "MESH: measuring errors between surfaces using the Hausdorff distance." ICME (1). 2002.

Significance

Mesh Simplification:
 Error Metrics:

- Faster
- Cleaner
- Segmentation
- Accurate
- Rigorous
- Communicable

Introduction - Hoppe et al.

- Ease of manipulation is related to mesh complexity.
- Provides a method of mesh optimization
- Given a mesh M_{0} represented by data points X, find a mesh M that has the same topological type as M_{0} but has less vertices.
- Use an energy function to optimize the fit.
- Mesh optimization can be used for simplification, reconstruction, and segmentation.

Necessary Background - Hoppe et al.

Mesh Representation:

A mesh can be represented as simplicial complexes and vertices or $\mathrm{M}=(\mathrm{K}, \mathrm{V})$

- Simplicial complex: Space of unions between points, lines, and faces
- Points: $\{i\} \in K$
- Lines: $\quad\{i, j\} \in K$
- Faces: $\{i, j, k\} \in K$

Method - Hoppe et al.

Energy function:

$$
E(K, V)=E_{\text {dist }}(K, V)+E_{\text {rep }}(K)+E_{\text {spring }}(K, V)
$$

Minimize

Method - Hoppe et al.

Energy function:

Method - Hoppe et al.

Energy function:

$$
\begin{aligned}
E(K, V)= & E_{\text {dist }}(K, V) \\
& \sum_{i=1}^{n} d^{2}\left(\mathbf{x}_{i}, \phi_{V}(|K|)\right)
\end{aligned}
$$

Method - Hoppe et al.

Energy function:
$c_{\text {rep }} m$
minimize number of vertices,
edges, and faces
$E(K, V)=E_{\text {dist }}(K, V)+E_{\text {rep }}(K)$

Method - Hoppe et al.

Energy function:

$$
\begin{array}{r}
E(K, V)=E_{\text {dist }}(K, V)+E_{\text {rep }}(K) \\
\text { Is this enough? }
\end{array}
$$

Method - Hoppe et al.

Energy function:

No!
(lack of minimum)

Method - Hoppe et al.
Energy function:

$$
\sum_{(j, k \in \in K}{ }_{k}{ }_{\|} \mathbf{v}_{j}-v_{k} \|^{2}
$$

Solution

Method - Hoppe et al.

Legal moves:

Method - Hoppe et al.

Legal moves:

edge collapse

Method - Hoppe et al.

Legal moves:

Method - Hoppe et al.

Legal moves:

Method - Hoppe et al.

Localization:

- Algorithm over the whole mesh is inefficient
- However, changes in local area don't affect distant vertices

Results - Hoppe et al.

Fig.	\#vert. m	\#faces	\#data n	Parameters		Resulting energies		$\begin{array}{\|c\|} \hline \text { time } \\ (\mathrm{min} .) \\ \hline \end{array}$
				$c_{r e p}$	κ	$E_{\text {dist }}$	E	
7c	1572	3152	4102			8.57×10^{-2}		
7 e	1572	3152	4102	10^{-}	10^{-2}	8.04×10^{-4}	4.84×10^{-2}	5
7 f	508	1024	4102	10^{-5}	10^{-2}	6.84×10^{-4}	3.62×10^{-2}	+3.0)
7 g	270	48	4102	10^{-5}	10^{-3}	6.08×10^{-4}	6.94×10^{-3}	+2.2)
7 h	163	334	4102	10^{-}	varied	4.86×10^{-4}	2.12×10^{-3}	17.0
7 k	9220	18272	12			6.		
71	690	1348	12745	10^{-5}	varied	4.23×10^{-3}	1.18×10^{-2}	7.0
7 o	40	80				2.20×10^{-2}		
7 p	262	515	16864	10	varied	2.19×10^{-3}	4.95×10	4.5
7 q	2032	383						
7 s	487	916	6752	10^{-5}	varied	1.86×10^{-3}	8.05×10^{-3}	9.9
7 t	239	432	6752	10^{-4}	varied	9.19×10^{-3}	4.39×10^{-2}	10.2

- Error between meshes are important for gauging accuracy
- Common methods are mean square error and total square error
- However, a variation on the Hausdorff distance may provide a more accurate measure of error
- In addition, the paper outlines an efficient method for finding distance

Necessary Background - Aspert et al.

- Hausdorff distance
- Euclidean norm

$$
d\left(p, \mathcal{S}^{\prime}\right)=\min _{p^{\prime} \in \mathcal{S}^{\prime}}\left\|p-p^{\prime}\right\|_{2}
$$

- Max distance

$$
d\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\max _{p \in \mathcal{S}} d\left(p, \mathcal{S}^{\prime}\right)
$$

Necessary Background - Aspert et al.

- Hausdorff distance
- Euclidean norm

$$
d\left(p, \mathcal{S}^{\prime}\right)=\min _{p^{\prime} \in \mathcal{S}^{\prime}}\left\|p-p^{\prime}\right\|_{2}
$$

- Max distance

$$
d\left(\mathcal{S}, \mathcal{S}^{\prime}\right)=\max _{p \in \mathcal{S}} d\left(p, \mathcal{S}^{\prime}\right)
$$

Not symmetrical!

$$
d\left(\mathcal{S}, \mathcal{S}^{\prime}\right) \neq d\left(\mathcal{S}^{\prime}, \mathcal{S}\right)
$$

Method - Aspert et al.

Forward and backward distance:

- Takes the max of the two distances

$$
\left[d\left(S, S^{\prime}\right), d\left(S^{\prime}, S\right)\right]
$$

Method - Aspert et al.

Grid sampling:

- Allows for discrete representation of surface integral
- Greatly reduces computation time

Results - Aspert et al.

Difference in metrics of error

Time less than analogous standard

Assessment - Aspert et al.

Pros

- Takes more topologies into consideration
- More robust to unusual corners and curves
- Gives "upper bound" on error estimate

Cons

- More complicated
- Application dependent
- Grid pattern cannot exhaust surface

Conclusion

Hoppe et al.

- The Hoppe et al. method may provide a way to simplify our mesh
- Could also provide a revised segmentation method

Aspert et al.

- The Aspert et al. method provides a useful method gauging accuracy.
- May provide a faster, more accurate way of finding distance.
- Especially important considering we are trying to minimize all gaps.

Questions?

