Project 13: Real-time Photoacoustic Imaging Using Clinical Ultrasound Systems

Howard Huang

Mentors: Dr. Emad Boctor, Haichong 'Kai' Zhang

Overview of Photoacoustic Imaging

- > Relies on emission of sound waves from materials absorbing light.
- ➤ Materials that demonstrate the photoacoustic effect include metallic objects and hemoglobin.
- > Useful in cancer detection, blood vessel visualization, instrument tracking (Brachytherapy therapy seed tracking project).

Limitations

- Oftentimes paired with ultrasound imaging.
- Need separate hardware to implement PA imaging (expensive).
- Current clinical US systems cannot process PA images (incorrect beamforming).

Transmit • Point source target

double trip

Photoacoustic beamforming

Receive

single trip

Ultrasound Image Processing

Project Goal

Design a real-time photoacoustic imaging system on a clinical

ultrasound platform.

Derived from Ultrasonix Porta SDK

Introduction Technical Approach Deliverables Milestones Management Plan

Technical Approach

Introduction Technical Approach Deliverables

Milestones

Introduction Technical Approach

Deliverables

Milestones

Deliverables

Minimum:

- 1. Documentation of PA re-beamforming algorithm and its integration into an US visualization platform.
- 2. Implementation of re-beamforming algorithm (C++ code).
- 3. Scripts to debug algorithm with simulation data sets (basic results + code).

Expected:

- 1. Adapt existing US platform to allow for PA imaging. Integrate our PA software into system (finished code).
- 2. Construct PA/US phantoms. Set up experiments to test PA imaging system.
- 3. Test PA imaging system using real RF US data (more detailed results).

Maximum:

- 1. Implement additional PA image algorithms (inverse beamforming, US visual data conversion) in completed PA imaging system.
- 2. Summarize findings in a paper for submission.
- 3. An in-class live demo of real-time PA imaging system.

Dependencies

- Access to Robotorium and lab (Submitted Permission Form)
- PA re-beamforming algorithm (Acquired from Mentor)
- PA inverse beamforming and video processing algorithm (Available)
- US Ultrasonix Porta SDK Software (Acquired)
- PA Image Setup (Laser system, PZT element as source) (Available)
- US System and Probe (Present)
- US Phantom (Basic phantoms Available)

3/20/2016 - 4/6/2016

MUSIIC

4/20/2016 - 5/5/2016

Introduction Technical Approach

Finish Implementing PA Imaging on Ultrasonix SDK. If possible, incorporate other US to PA algorithms

Enable PA Image Processing on Ultrasonix SDK

Collect RF test data on PA beamforming and imaging

Prepare demo and final report/paper on results

ich Deliverables

Milestones

4/6/2016 - 4/20/2016

4/6/2016 - 4/20/2016

- Established weekly meetings with Kai (Mentor).
- Regularly check code and project status.
- Keep frequent backups of code, on multiple storage systems (JHBox, personal Dropbox, etc.)
- Will contact mentors for assistance when stuck and switch to alternate timeline plan if delays are encountered.

Responsibilities

- Understand coding in C++, Ultrasonix SDK, and QT3/OpenCV environments.
- Understand PA beamforming and imaging algorithms.
- Work on documentation for PA imaging code.
- Once PA algorithms are implemented, will then need to plan and document integration of PA algorithms into existing US framework.
- Ask mentors about Ultrasonix SDK when stuck.

Reading List

- Zhang, Kai, et. al. "Synthetic Aperture Based Photoacoustic Image Re-beamforming From Ultrasound Post-beamformed RF Data". Unpublished Manuscript (will be submitted for publication).
- Park, Suhyun, et al. "Adaptive beamforming for photoacoustic imaging using linear array transducer." Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008.
- Kuo, Nathanael, et al. "Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system." *Journal of biomedical optics* 17.6 (2012): 0660051-0660057.
- Kang, Hyun-Jae, et al. "Software framework of a real-time pre-beamformed RF data acquisition of an ultrasound research scanner." SPIE Medical Imaging. International Society for Optics and Photonics, 2012.
- Harrison, Travis, and Roger J. Zemp. "The applicability of ultrasound dynamic receive beamformers to photoacoustic imaging." *Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on* 58.10 (2011): 2259-2263.
- Frazier, Catherine H., and William Brien. "Synthetic aperture techniques with a virtual source element." *Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on* 45.1 (1998): 196-207.
- J. Kortbek, J. A. Jensen, K. L. Gammelmark, "Synthetic Aperture Sequential Beamforming," *Proc. in IEEE Int. Ultrasonics Symp.*, 966-969 (2008).
- Wilson, Thaddeus, et al. "The ultrasonix 500RP: A commercial ultrasound research interface." Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 53.10 (2006): 1772-1782.

Questions.

Introduction Technical Approach Deliverables Milestones Management Plan