Towards Correlation of Clinical Outcomes with Radiation Therapy Dose Distributions

Group 14
Alex Mathews
Pranav Lakshminarayanan

Computer Integrated Surgery II
Spring 2016
Team and Mentors

Alex Mathews

Pranav Lakshmi

Dr. Todd McNutt

Dr. Russell Taylor
Goals

Correlating clinical outcomes with refined dose distributions on critical structures

Goals:

• To refine the datasets and infrastructure required for predicting clinical outcomes using past patient data.

• Make the first steps towards accurate toxicity and outcome predictions in a commercial, cloud computing platform.
Importance and Relevance

With cancer treatments, there is a tradeoff between clinical effectiveness and deleterious side effects.

The ability to predict clinical outcomes for a particular patient (taking into account unique anatomy and condition) would allow oncologists to make more informed decisions regarding patient treatment plans.

- 60-90% Xerostomia
- 15-30% Dysphagia
- 40-60% Hearing Loss
Importance and Relevance

In Radiation Oncology for the Head and Neck region, one common side effect is **Dysphasia**, also known as swallowing dysfunction.

Dysphasia may be caused by excessive radiation applied to the **Parotid Glands**.
Technical Summary

1. Set up development database within Hopkins network
 - Store anonymized patient data, images and scans, and clinical outcomes
 - Must be queryable and accessible by other services
2. Deformable registration of critical structures:
 - Currently, we are looking in the head and neck region, specifically at the parotid glands
 - The deformable registration would bring images into one reference frame

3. Dose distribution mapping
 - Based on how dose is applied, generate a 3D map of received dose over the critical structure
 - Partition the organ in a way to allow for insightful analytics
Technical Summary

Project scope

1. Contour data (binary masks)
2. 3D mesh
3. Normalized mesh
4. Apply dose distribution
5. Commercially available deformable registration algorithm

Future work

- Correlation between treatment plans and clinical outcomes
- Machine learning algorithms
Deliverables

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up queryable infrastructure with anonymized data</td>
<td>Implementation and validation of deformable registration algorithm on the dataset</td>
</tr>
<tr>
<td>Implementation and testing deformable registration algorithm</td>
<td>Design dose mapping algorithm</td>
</tr>
</tbody>
</table>

Maximum

Implement dose mapping algorithm
Dates and Milestones

Oncospace CIS2

- Minimum Deliverables
- Infrastructure Set Up
 - Obtain and Set Up Servers
 - Infrastructure and Endpoint Documentation
 - Data Transfer from Oncospace
- Deformable Registration Algorithm
 - Obtain Critical Structure Test Data
 - Choose Deformable Registration Algorithm
 - Proposal and Documentation on Algorithm
 - Contour Data Conversion
 - Implement Deformable Registration
 - Spring Break

- Expected Deliverables
 - Checkpoint Presentation

- Deformable Registration Algorithm
 - Filter Dataset
 - Perform Registration on Dataset
 - Validate Registration

- Dose Mapping Algorithm
 - Dose Mapping Algorithm Design
 - Dose Mapping Proposal and Documentation

- Maximum Deliverables
 - Implement Dose Mapping Algorithm
 - Perform Algorithm on Dataset
 - Final Presentation
Dependencies

<table>
<thead>
<tr>
<th>Dependency</th>
<th>Status (or necessary date of resolution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to deformable registration algorithm</td>
<td>In progress (Testing ITK packages)</td>
</tr>
<tr>
<td>Access to Oncospace database</td>
<td>In progress – will be complete by March 1</td>
</tr>
<tr>
<td>Access to space on Hopkins network</td>
<td>In progress – needed by March 6</td>
</tr>
<tr>
<td>Github repositories and access to Oncospace codebase</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Management Plan

Weekly meetings with mentors – Tuesdays at 9AM

Team meetings on Mondays and Fridays (and as needed)

<table>
<thead>
<tr>
<th>Alex</th>
<th>Pranav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of development database and data migration</td>
<td>Design and testing of dose mapping algorithm</td>
</tr>
<tr>
<td>Testing and implementation of deformable registration algorithm</td>
<td></td>
</tr>
</tbody>
</table>
Reading List

Steven F. Petit, Binbin Wu, Michael Kazhdan, André Dekker, Patricio Simari, Rachit Kumar, Russell Taylor, Joseph M. Herman, Todd McNutt,” Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma”, Radiotherapy and Oncology, 102 (2012) 38–44.