Notes and Conventions

Cow: Green
Human: Blue
Mouse: Red
Pig: Black
Rat: Purple

Using the following parameters for Alexandrakis calculations:

<table>
<thead>
<tr>
<th>lambda(nm)</th>
<th>HbO2 molar extinction(1/cm/M)</th>
<th>Hb molar extinction(1/cm/M)</th>
<th>HbO2 absorption (1/cm)</th>
<th>Hb absorption (1/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>590</td>
<td>14400.8</td>
<td>28324.4</td>
<td>77.12800558</td>
<td>151.7002167</td>
</tr>
<tr>
<td>610</td>
<td>1506</td>
<td>9443.6</td>
<td>8.065855814</td>
<td>50.57816465</td>
</tr>
<tr>
<td>630</td>
<td>610</td>
<td>5148.8</td>
<td>3.267046512</td>
<td>27.57601488</td>
</tr>
<tr>
<td>650</td>
<td>368</td>
<td>3750.12</td>
<td>1.970939535</td>
<td>20.08494502</td>
</tr>
</tbody>
</table>

Also, please note that Jacques citations can be ambiguous about the species from which a data point is taken.
Adipose μ_a

Human: Bashkatov 2011
- Citing Salomatina 2006
 - Integrating sphere, inverse Monte Carlo method
- Citing Bashkatov 2005
 - Integrating sphere, inverse adding-doubling method

Mouse: Alexandrakis 2005
 - Previously used in SARRP Red Journal article

Rat: Bashkatov 2011
- Citing Bashkatov 2005
 - Integrating sphere, inverse adding-doubling method

Cow: Kienle 1996
- Spatially Resolved Absolute Diffuse Reflectance
Adipose μ_s'

Cow: Kienle 1996
- Spatially Resolved Absolute Diffuse Reflectance

Rat: Bashkatov 2011
- Citing Bashkatov 2005
 - Integrating sphere, inverse adding-doubling method

Mouse: Alexandrakis 2005

Mouse: Wang 2015
- Citing Jacques 2013
 - Previously used in SARRP Red Journal article

Human: Bashkatov 2011
- Citing Salomatina 2006
 - Integrating sphere, inverse Monte Carlo method
- Citing Bashkatov 2005
 - Integrating sphere, inverse adding-doubling method

Human: Jacques 2013
- Citing Salomatina 2006 (Fat)
- Citing Salomatina 2006 (Adipocytes)
- Citing Simpson 1998
- Citing Peters 1990
Heart μ_a

Mouse: Alexandrakis 2005
- Citing Swartling 2003

Mouse: Wang Ge 2006 for range 650-700 nm
- Citing Alexandrakis 2005 for formula
- No citation for μ for Hb, HbO$_2$, H$_2$O

Human: Sandell 2011
- Citing Dimofte 2009
 - Reported as range 0.03 to 1.55 cm$^{-1}$, not standard deviation
 - Eight patients, properties determined before and after PDT by analysis of diffuse reflectance spectra
- Citing Dimofte 2010
 - Reported as range 0.12 to 0.18 cm$^{-1}$, not standard deviation
 - Five patients, properties determined before and after PDT by analysis of diffuse reflectance spectra
Heart μ_s'

Human: Sandell 2011
- Citing Dimofte 2009
 - Reported as range 17.56 to 75.06 cm$^{-1}$, not standard deviation
 - Eight patients, properties determined before and after PDT by analysis of diffuse reflectance spectra
- Citing Dimofte 2010
 - Reported as range 5.22 to 90.8 cm$^{-1}$, not standard deviation
 - Five patients, properties determined before and after PDT by analysis of diffuse reflectance spectra

Mouse: Alexandrakis 2005
- Citing Swartling 2003

Mouse: Wang Ge 2006 for range 650 – 750 nm
- Citing Alexandrakis 2005 for formula
Kidney μ_a

Mouse: Alexandrakis 2005
- Citing Solonenko 2002

Mouse: Wang Ge 2006 for range 650-700 nm
- Citing Alexandrakis 2005 for formula
- No citation for μ for Hb, HbO$_2$, H$_2$O
Kidney μ_s'

- **Alexandrakis 2005**: Citing Solonenko 2002
- **Wang Ge 2006 for range 650-700 nm**: Citing Alexandakis 2005 for formula
- **Note: likely to be error**
 - $(41700 \text{ mm}^{-1}) (650)^{1.51} = 2.359 \text{ mm}^{-1} = 23.6 \text{ cm}^{-1}$
 - $(41700 \text{ mm}^{-1}) (700)^{1.51} = 2.109 \text{ mm}^{-1} = 21.1 \text{ cm}^{-1}$
Liver μ_a

![Graph showing absorbance vs. wavelength for different species](image)

Liver
- Cow: Cheong 1990
 - Citing Karagiannes 1989

Human
- Cheong 1990
 - Citing Andreola 1988
 - Citing Marchesini 1989

Mouse
- Alexandrakis 2005

Pig
- Cheong 1990
 - Citing Wilson 1986

Mouse
- Cheong 1990
 - Citing Parsa 1989
 - See figure to right for hump around 550 nm

Mouse
- Wang Ge 2006
 - Citing Alexandrakis 2005

Cow
- Kienle 1996

Human
- Sandell 2011
 - Citing Wang HW 2003, 2005
 - Reported as range 1.15 to 1.56 cm$^{-1}$, not standard deviation

Fig. 1

Average value of μ_a over the 350-2200-nm wavelength range. Vertical bars represent one standard deviation and appear at 200-nm intervals for clarity.
Liver μ_s'

- **Human:** Sandell 2011
 - Citing Wang HW 2003, 2006
 - In situ measurement in PDT patients
 - Reported as range 21.6 to 30.4 cm$^{-1}$, not standard deviation

- **Mouse:** Wang Ge 2006 for range 650-700 nm
 - Citing Alexandakis 2005 for formula
 - Note: likely to be error
 - $(629 \text{ mm}^{-1}) (650)^{-1.05} = 0.7 \text{ mm}^{-1} = 7 \text{ cm}^{-1}$
 - $(792 \text{ mm}^{-1}) (700)^{-1.05} = 0.648 \text{ mm}^{-1} = 6.48 \text{ cm}^{-1}$

- **Pig:** Cheong 1990
 - Citing Wilson 1986
 - PDT study

- **Cow:** Cheong 1990
 - Citing Karagiannes 1989

- **Human:** Jacques 2013
 - Citing Parsa 1989

- **Mouse:** Alexandakis 2005

- **Cow:** Kienle 1996
Lung μ_a

Human: Cheong 1990
- Citing Marchesini 1989 ▲
- Integrating sphere, goniophotometry
- Citing Andreola 1988 ●

Mouse: Alexandrakis 2005 ●
- Citing Beek 1997, Srinivasan 2003

Mouse: Wang Ge 2006 for range 650-700 nm ■
- Citing Alexandrakis 2005 for formula

Human: Sandell 2011
- Citing Dimofte 2009 □
- Reported as range 0.16 to 1.36 cm$^{-1}$, not standard deviation
- Citing Dimofte 2010 ◆
- Reported as range 0.49 to 0.88 cm$^{-1}$, not standard deviation
Lung μ_s'

Human: Sandell 2011
- Citing Dimofte 2009
 - Reported as range 1.07 to 83.81 cm$^{-1}$, not standard deviation
- Citing Dimofte 2010
 - Reported as range 21.14 to 22.52 cm$^{-1}$, not standard deviation

Mouse: Alexandrakis 2005
- Citing Beek 1997, Srinivasan 2003

Mouse: Wang Ge 2006
- Citing Alexandrakis 2005 for formula
Stomach μ_a

Mouse: Wang Ge 2006 for range 650-700 nm
- Citing Alexandrakis 2005 for formula
- Note: possible error
- No citation for μ for Hb, HbO$_2$, H$_2$O

Human: Welch 2011
- Citing Thueler 2003
 - Spatially resolved diffuse reflectance
 - ±1.4, ±0.7, ±0.5 at 542 nm, 600 nm, 650 nm, respectively

Mouse: Alexandrakis 2005
- Citing Thueler 2003
Stomach μ_s'

Mouse: Wang Ge 2006 for range 650-700 nm
- Citing Alexandrakis 2005 for formula
- Note: likely to be error
 - $(792\ mm^{-1})(650)^{0.97} = 1.48\ mm^{-1} = 14.8\ cm^{-1}$
 - $(792\ mm^{-1})(700)^{0.97} = 1.38\ mm^{-1} = 13.8\ cm^{-1}$

Mouse: Alexandrakis 2005
- Citing Thueler 2003

Human: Welch 2011
- Citing Thueler 2003
- Spatially resolved diffuse reflectance
 - $\pm 3.5, \pm 2.0, \pm 1.0$ at 542 nm, 600 nm, 650 nm, respectively
Summary

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>Alexandrakis</th>
<th>SARRP Red Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adipose</td>
<td>Heart</td>
</tr>
<tr>
<td>590</td>
<td>0.431</td>
<td>6.65</td>
</tr>
<tr>
<td></td>
<td>12.900</td>
<td>11.60</td>
</tr>
<tr>
<td>610</td>
<td>0.127</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>12.700</td>
<td>11.00</td>
</tr>
<tr>
<td>630</td>
<td>0.069</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>12.480</td>
<td>10.50</td>
</tr>
<tr>
<td>650</td>
<td>0.050</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>12.270</td>
<td>10.10</td>
</tr>
</tbody>
</table>

* SARRP abdomen μ_a from Alexandrakis 2005, abdomen μ_s' from Jacques 2013

** SARRP tumor μ_a and μ_s' from Honda 2011
Main Sources

