CONTENT
The following describes the content found in this design document

Folders: describes the layout of our repository (folders and files)

Files: details the content of each file, including inputs/outputs and a brief description.
Compiling Cpp Code: details how to compile the cpp code to make MeshLabCppCore.js
User-Interface Manual: describes how to use the interface

FOLDERS

The repository contains one html file to open the web-browser environment and three folders: js,
MeshCpp and Meshes. Folder js contains .js files. Folder MeshCpp contains .cpp files. Folder
Meshes contains three .stl files. Folder Vcglib contains an open source library.

e Threejs_Playground
o playground.html
o js
meshModification.js
three.js
ThreeBSP.js
TrackBallControls.js
m MeshLabCppCore.js
o MeshCpp
m CppMesh.cpp
m Decorator.cpp
m Meshing.cpp
m Open.cpp
® miniz.c
o Meshes (bunny5k_asc.stl, bunny 5k_bin.stl, Leg.stl)
e Vcglib (apps, docs, eigenlib, img, vcg, wrap)

FILES
Note: if a function does not contain either inputs, outputs, or both, only a description is provided.
Additionally, open source functions are only briefly described.

Playground.html
Dependencies: three.js, trackballControls.js, Three.BSP, OBJLoader.js, MeshLabCppCore,
meshlab.js
e init()
o Description: initializes the html document, sets up the scene (including the
camera, light and background colors), and renders the axes and mouse
e buildAxes()

Inputs: length - the length of the axes
Outputs: axes - the axes created using several axis
Description: takes in all axes and adds them to scene in appropriate location.
Adapted from
http://soledadpenades.com/articles/three-js-tutorials/drawing-the-coordinate-axes
buildAxis()
o Inputs: src- beginning location (Vector3), dst - end location (Vector3) , colorHex -
color of axis, dashed- true if dashed, false if solid
o Output: axis - the axis created
o Description: builds a single axis
onWindowResize()
o Description: updates rendering frame size when window size changes
onDocumentMouseMove()
o Inputs: event- contains information regarding mouse movement (especially
coordinates)
o Description: Keeps track of the mouse’s position and whether the mouse is
positioned over an object in the scene
isObjectinArray()
o Inputs: object - object of interest, array - array to check
o Outputs: index1 - index of location of object in array (or -1 if not found)
o Description: searches for an object in an array. If the object is found in the array,
its index is returned. If the object is not found, -1 is returned
checkSelected()
o Inputs: intersects - array of intersected objects
o Description: checks if the object in the scene was selected by the mouse
onDocumentMouseDown()
o Input: event- event- contains information regarding mouse movement (especially
coordinates)
o Description: Allows one to move an object or rotate the scene upon mouse move
onDocumentMouseUp()
o Input: event- event- contains information regarding mouse movement (especially
coordinates)
o Description: completes selection of object if mouse is above an object.
animate()
o Description: animates the scene
render()
o Description: displays the scene in the web-browser
removeFromArray()
o Input: orig- array where object is found, remove- objected to be removed
o Description: removes an object from the array.
search()
o Input: nameKey - object key name , myArray - array to search in
o Output: the object

http://soledadpenades.com/articles/three-js-tutorials/drawing-the-coordinate-axes/

o Description: searches an array for a specific object.

meshModification.js
e HandleFileSelect()
o Inputs: evt- change event, meshFromFile- mesh, meshLab- mesh module,
callback- function
o Description: opens, parses and reads the mesh file. It then creates the mesh by
calling on createMesh function. The function calls back two variables in the
function — the mesh file and the module that stores the mesh.
e createMesh()
o Inputs: mesh, meshLab- mesh module
o Outputs: mesh- constructed mesh
o Description: creates the mesh using a mesh and and mesh module. The function
creates vertices and face geometry (along with their normals) using a pointer to
the mesh file. If the mesh already exists, only the geometry is updated.
e QuadricSimp()
o Inputs: mesh, meshLab- mesh module
o Description: performs quadric simplification on a mesh
e ClusteringSimp()
o Inputs: mesh, meshLab- mesh module
o Description: performs clustering simplification on a mesh
e removeDupVert()
o Inputs: mesh, meshLab- mesh module
o Description: removes duplicate vertices on mesh
e smoothMesh()
o Inputs: mesh, meshLab- mesh module
o Description: performs mesh smoothing
e buildFaceNormals()
o Inputs: meshLab- mesh module
o Outputs: array of face normals
o Description: creates an array of all the face normals
e buildVertexNormals()
o Inputs: meshLab- mesh module
o Outputs: array of vertex normals
o Description: creates an array of all the face normals

Three.js
Open source library that makes WebGL (3D in the browser) easy to use. Website:
http://threejs.org. Author: mrdoob, http://mrdoob.com/

ThreeBSP.js
Open source binary space partitioning tree that performs constructive solid geometry
applications in three.js

http://threejs.org/
http://mrdoob.com/

TrackballControls.js

Allows the user to rotate the camera about an object and drop/drag objects. Authors: Eberhard
Graether http://egraether.com/, Mark Lundin http://mark-lundin.com, Simone Manini
http://daron1337.qithub.io, Luca Antiga http://lantiga.github.io

MeshLabCppCore.js

Mesh modification code written in cpp compiled into asm.js (an extraordinarily optimizable,
low-level subset of JavaScript) using emscripten. The following code was compiled:
cppMesh.cpp, decorator.cpp, meshing.cpp, and open.cpp

CppMesh.cpp

Contains functions that allow access to mesh information, ie. mesh-pointer, number of vertices,
number of faces, vertex vectors, face vectors, etc. Also allows functions to open and save
mesh.

https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources

Decorator.cpp
Contains functions to build face normals and vector normals.
https://qgithub.com/cnr-isti-vclab/meshlabjs/tree/master/sources

Meshing.cpp
Contains quadratic simplification, clustering, and removing duplicate vectors function.
https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources

Open.cpp
Contains opening mesh function.
https://qgithub.com/cnr-isti-vclab/meshlabjs/tree/master/sources

Miniz.c
Needed for compiling using emscripten.
https://qgithub.com/cnr-isti-vclab/meshlabjs/tree/master/sources

VcgLib

Contains the Visualization and Computer Graphics Library, an open source portable C++ templated
library for manipulation, processing and displaying with OpenGL of triangle and tetrahedral meshes
(http://vcq.isti.cnr.it/veglib/).

COMPILING CPP CODE

http://egraether.com/
http://mark-lundin.com/
http://daron1337.github.io/
https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources
https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources
https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources
https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources
https://github.com/cnr-isti-vclab/meshlabjs/tree/master/sources
http://vcg.isti.cnr.it/vcglib/

To compile the cpp code found in the MeshCpp folder and make the MeshLabCppCore.js file,
emscripten must be installed and dowloaded by following this link
http://kripken.github.io/emscripten-site/

When compiling, place all cpp and h files in the emscripten folder. Compile using:
Jemcc --bind -I../../../vcglib CppMesh.cpp Meshing.cpp open.cpp Decorator.cpp Transform.cpp
-0 MeshLabCppCore.js

USER-INTERFACE MANUAL

Buttons:

Choose File - allows one to choose and upload a .stl file for loading onto the screen.
Add Sphere - adds a sphere of radius 50, 30 horizontal segments and 30 vertical segments
Add Cube - adds a cube of dimension 50x 50x 50

Add Plane - adds a plane of dimension 0x500x500

Union - unions the mesh of one object with that of another object

Intersect - intersects the mesh of one object with that of another object

Subtract - subtracts the second mesh from the first mesh

Remove Duplicates - removes duplicate vertices from a mesh

Quadric Simplification - applies quadric simplification algorithms to a mesh
Smoothing - applies a Laplacian smoothing algorithm to a mesh

Scale Object - scales an object by 1.5 in the X, y, and z direction

Remove Obiject(s) - removes meshes that are currently in the scene

Directions to prepare a mesh for CSG:
1) Click the “Choose File” button to upload an .stl mesh.

) Select the mesh (it should turn red) and then click the “Remove Duplicates” button

) Select the mesh again and click the “Smoothing” button (optional)

) Select the mesh again and then click the “Quadric Simplification” button. Do this as

many times as needed until you reach the desired number of faces or vertices

5) To close the mesh, create a plane by clicking on the “Add Plane” button. Move the plane
so that it touches the mesh and also covers the hole on the mesh. Select the plane and
then the mesh and click “Intersect”. Do this for as many holes as needed.

6) If you wish to scale the mesh, select the mesh and then click the “Scale Object” button.

7) Your mesh is now ready for CSG.

A WN

Directions to perform CSG:

Union: select both meshes and then click the “Union” button

Intersect: select both meshes and then click the “Intersect” button

Subtraction: select a mesh and then the mesh you would like to subtract from the first mesh and
then click the “Subtract” button

http://kripken.github.io/emscripten-site/

