

Surgical Instrument for Robotic Open Microsurgery

Team: Radhika Rajaram and Olivia Puleo Mentors: Yunus Sevimli, Dr. Taylor, Dr. Razavi

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Project Overview

- Design a microforceps instrument that can be used with the Galen steady-hand robot
- Instrument needs to be held above the robot tool attachment
- · Allows for rotation of tool

Technical Approach

- Take apart existing forceps and cannibalize useful parts.
- · Design different gripper/actuators for the forceps.
- · Design tool-holder accessory for rotational DOF
- · Prototype feasible designs
- · Test with Galen and evaluate
- Iterate over design and fabrication methods

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Deliverables Update

	Date	Status
Minimum	3/16	
3D printed needle driver prototype		Met
Galen integration		Met
Rotational DOF		Met
Expected	4/9	
Stainless Steel		Postponed
Iterated prototype		Met
Maximum	5/4	
Second instrument with		On schedule
microvascular grasper tip		-
Sterilizable		On schedule
Design for manufacturing ability		On schedule

Existing Forceps designs

There are many varieties of forceps with different mechanisms of actuation, grips and jaws adapted to every surgical application such as grasping, holding, clamping, cutting, dissecting, dilating, suctioning etc.

Classification of forceps

Based on mechanism of actuation we have three main categories:

- 1) Scissoring type
- easy construction
 - 2) Tweezer type
- single body
 - 3) Sliding rod type
- slim profile

Classification of forceps

Based on grip design we have four categories:

- 1) Loop grip
 - Hard to drop, but difficult to rotate
- 2) Tweezer grip
 - Elastic return, but droppable
- 3) Pliers grip
 - Can apply a lot of force, but clunky
- 4) Misc.

Copyright @ 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Design Selection

Sliding rod actuation + Tweezer grip

Sliding rod actuation advantages:

Cylindrical nature- inherent rotatability
Long and thin nature- easy access of surgical site
Easily cannibalized

Tweezer grip advantages:

Can be made cylindrical to allows the tool to be rolled Elastic nature allows for normally-open / normally-closed designs without addition of a spring

Round Grip Demonstration

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Recommendations from Patkin, M. (1977)

- 1. Length from grip to top of handle should be ~10cm
- 2. Handle diameter should be 5 10mm
- The force required for opening or closing the instrument should be 40 – 100 g.
- 4. A 6:1 mechanical advantage or greater is ideal. 3:1 minimum

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Dependency Status

Dependency	Status	Plan if unable to resolve
Access to Galen	Resolved	N/A
Machine shop access	Resolved	N/A
Funds for machining and training	Resolved	N/A
Availability of residents and experienced surgeons for testing	Pending	Tool will be designed with the feedback we do have

Original Timeline

	February	March	April	May
Preliminary Research		11 11		
Reading papers, mentors discussion				
Write project proposal & presentation				
Training & certification	8-4			
Design & Prototyping				
CAD design for forceps gripper				
CAD design for rotational accessory				
Rapid prototyping				
Initial testing & evaluation				
Alpha version				
Improved design & CAD models				
Machining				
Testing with robot				
Revised design & implementation				
Final Evaluation with surgeons				
Final report and poster presentation				

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Updated Timeline

	February	March	April	May
Preliminary Research				
Reading papers, mentors discussion	-0.5			
Write project proposal and presentation				
Training and certification				
Design & Prototyping				
CAD design for forceps gripper				
CAD design for rotational accessory				
Rapid prototyping				
Initial testing & Evaluation				
Alpha version				
Improved design & CAD models				
Machining				
Testing with robot				
Revised design & implementation				
Stainless steel 3D printed version				
Suturing Phantom Design				
Final Evaluation with surgeons				
Final report & poster presentation				

Future work:

- Rapid prototype latest design
- Obtain suitable pins and springs
- Change dimensions and tolerances for stainless steel
- Fabricate metal prototype

Questions?

Copyright © 2016 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology

References

- 1 . Patkin, M. (1977), Ergonomics Applied to the Practice of Microsurgery. *Australian and New Zealand Journal of Surgery*, 47: 320–329.
- 2. [Web log post]. (n.d.). Retrieved from http://www.u.arizona.edu/~pen/ame352/Notes%20PDF/3%20Analytical %20kinematics.pdf

