

K-Wire Tracking in 3D Camera Views

Group 3: Athira Jacob and Jie Ying Wu

Mentors: Mathias Unberath, Javad Fotouhi, Bernhard Fuerst, Alex Johnson, Daniil Pakhomov

Background

- K-wire insertion currently requires many X-rays
- Misplacement could damage important structures in the body
- Current tracking solutions are ineffective for K-wire
 - Traditional computer vision solutions fail
 - Trackers cannot be placed on it
- Propose to use convolutional neural network trained on RGB images

Multiple entry wounds

X-ray image of hip region in pelvic surgery

Images from Fischer, Marius, et al. "Preclinical usability study of multiple augmented reality concepts for K-wire placement." International Journal of Computer Assisted Radiology and Surgery 11.6 (2016): 1007-1014.

Solution

Deep learning based K-wire tracking algorithm using RGB images

- Eliminates the need for multiple X-ray images
- Can be easily integrated into augmented reality solutions to orthopedics surgery

1) Identify K-wire

2) Estimate orientation/pose

3) Show K-wire orientation/pose

All images from Kovacevic, D., Vogel, L. A., & Levine, W. N. (2015, November). Complex Elbow Instability: Radial Head and Coronoid. Hand Clinics.

Technical Approach

- Create data
 - Create a modular data set by capturing foreground and background separately
- Design network
 - Design and train a CNN based neural net to segment K-wire in RGBD images
 - HED for tool tracking^[8], U-Net^[9]...
- Pose estimation from segmented stereo image pairs

Sample foreground shot before segmentation

Sample background shots

[8] Pakhmov et. al, Semantic-boundary-driven approach to Instrument Segmentation for Robotic Surgery

[9] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI 2015 (Vol. 9351, pp. ≥ 234–241)

Deliverables

Minimum

- Phantom to create training data
- Modular data set
 - Foreground videos with K-wire against drape
 - Segmentations of the K-wire position
- Calibrated stereo cameras
- CNN trained on K-wire video with plain background to segment it

Expected

- Realistic data set of surgical workspace by composing foreground and background videos of surgical workspace with instruments (ie. scalpel)
- Algorithm to extract K-wire orientation from segmentation in 2D
- CNN trained with realistic data that can segment the K-wire

Maximum

- Algorithm to extract K-wire position and orientation in 3D in free space
- Algorithm to estimate position of K-wire tip with occlusion

Data Set Creation – Capturing Images

Foreground images

Varying Lighting

Varying Colour

Background images

Increasing Complexity

Data Set Creation – Composing Images

Data Set Creation – Challenges

No colour blending

Too perfect colour blending

- Histogram matching in each LAB channels
- Outward Gaussian blurring on the mask to smooth edges

Technical Approach – Holistically-Nested Edge Detection

U-Net

Fully convolutional network: retains semantic context, better for memory usage

[9] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation

U-Net

- Fully connected layers replaced by convolutional layers
- Usual contracting network supplemented by upsampling layers: increase the resolution of the output.
- High resolution features from contracting path combined with upsampled output: retains image context
- Originally used with ~30 images! (with extensive augmentation)

U-Net: Training with Level 1 Images

- 5 Layers
- Cross entropy loss with weight balancing
- Adam optimizer

a) Original images b) Ground truth c) Predictions

U-Net: Challenges

Possible solutions:

- Experiment with hyper-parameters etc
- Train using higher level images directly
- Better post-processing

U-Net: Challenges

Possible solutions:

- Experiment with hyper-parameters etc
- Train using higher level images directly
- Better post-processing

U-Net- Retrain with Level 2 Images

U-Net: Retrain with Level 2 images

Results

a) Original image

b) Prediction

Much better results on Level 1 images!

- Refine network
- Post-processing

U-Net: Further

- Refine network to increase accuracy
 - Iterative!
 - Better post-processing methods
- Validation with new data
- Orientation estimation in 3D

Dependencies

Dependency	Status	Plan
Access to servers for training CNN	\checkmark	
Get Keras installed in server	In progress	Contacted Anton
Access to camera and surgical instruments		
Access to segmentation library		
Create a phantom		
Observe K-wire use in clinic	In progress	In discussion with Alex Johnson
Usage limit on thin6 server	In progress	Obtained access to MARCC cluster, run on desktop with GPU

Timeline

Reading List

- 1. Fischer, Marius, et al. "Preclinical usability study of multiple augmented reality concepts for K-wire placement." International Journal of Computer Assisted Radiology and Surgery 11.6 (2016): 1007-1014.
- 2. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2016). The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. *arVix Preprint*. Retrieved from http://arxiv.org/abs/1611.09326
- 3. Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2015.
- 4. Pakhmov et. al, Semantic-boundary-driven approach to Instrument Segmentation for Robotic Surgery
- Lee et. al, Simultaneous Segmentation, Reconstruction and Tracking of Surgical Tools in Computer Assisted Orthopedics Surgery
- Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer Assisted Intervention - MICCAI 2015 (Vol. 9351, pp. 234–241). Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
- 7. Szegedy, C., Reed, S., Erhan, D., Anguelov, D., & Ioffe, S. (2014). Scalable, High-Quality Object Detection. arXiv. Retrieved from http://arxiv.org/abs/1412.1441