
CIS 2 Molly O’Brien
Final Report 5/11/17

Introduction

Physiological hand tremor has been measured to be 38 μm in retinal microsurgery
[1]. The frequency of hand tremor can vary between 4-9 Hz [2] Hand tremor poses a risk
to the patient in microsurgery because the surgeon must navigate through and operate on
sub-millimeter structures. Surgical robots help remove hand tremor. At Johns Hopkins, the
Galen Steady-Hand Robot has been developed for microsurgery in the head and neck with
sub-millimeter precision [3]. Steady-Hand Robots (SHR) are cooperative systems where
the robot and the surgeon both hold the tool. The surgeon pushes on the tool, the robot
reads the force applied and moves in the desired direction.

To compute the hand tremor from a surgical video the tool must be tracked. The 3D

trajectory of the tool can be transformed in the frequency domain and the motion above
the tremor threshold isolated. There are many publications on tracking tools with and
without markers. Bouarfa et al [4] developed method for tool tracking with color markers.
The authors paint the shafts of laparoscopic tools different colors and compute color
histograms for each marker color. These color histograms are used to find the probability
each pixel in an image is a marker. The CAMshift algorithm is used to find the most likely
marker positions in the image.

Problem

We want to compare the magnitude and frequency of tremor in manual and robot-
assisted surgery. In many microsurgical applications, surgical site is observed through a
stereo microscope which is not rigid and can move during procedures. We propose an
algorithm that can accurately track color markers on surgical tools and in the background,
compensate for microscope motion, and perform frequency analysis on the tool
trajectories. This algorithm is used to compare suturing task performed manually and with
the Galen robot.

Methods
Our algorithm performs frequency analysis on tool motion observed through a calibrated
stereomicroscope. The microscope was calibrated using OpenCV functions.

Algorithm Pipeline:

Color Marker Tracking
 We need to track the tool motion and microscope motion. In our experimental setup
the background is stationary; therefore, apparent background movement in the microscope
video corresponds to the microscope movement.

Blue color markers were painted on the background, and green color markers were

painted on the surgical tools. The surgical tools used have multiple green markers so they
can be tracked from many different angles. The color markers were manually segmented
in several images (between 1 and 7) from the experimental videos. Color histograms were
created using the Hue and Saturation values from the segmented marker pixels. A Gaussian
mixture model (GMM) was used to compute the probability a pixel with a given hue and
saturation was from a color marker. Two separate GMMs were created for detecting
background and tool markers. The number of modes of the GMM (3 or 4) and the channel
with marker detections were tuned manually for each experimental video.

Fig 1: frame from microscope video, background marker probability image, tool marker
probability image

 For each frame in the microscope video a background marker probability
image and a tool probability image were created. The tool markers were detected using an
MSER blob detector on the probability images. We matched the tool marker points detected
in the left image to nearby markers detected in the right image. If there was no nearby
marker point detected in the opposite image the detected marker was ignored.

The background markers were detected by

matching a background marker template to the
current frame. A left and right template were used to
match to the left and right videos. The templates
were cropped marker probability images with all 15
markers visible. The centers of the markers in the
template image were detected using an MSER blob
detector. A simple greedy search was used to match
the blobs in the left template and the right template.

Fig 2: left background template,
right background template

For each video frame, the algorithm found the best translation and rotation the templates
to match the background probability image. The marker points detected in the images were

rotated and translated by the best transform found. These points were taken as the
background marker image detection points. This allowed positions for all 15 background
markers to be found in every video frame, even if some markers were occluded. Once the
tool and background markers were detected and matched in the left and right images, the
3D marker locations were triangulated.

Fig. 3: Video frame with marker and tool detections

Camera Motion Compensation
 The background in the experimental video was stationary. Any apparent
background motion in the video was microscope motion. The camera motion compensation
module found the rigid transform from the triangulated 3D background points in each
frame to the background points in the first frame. This transform was applied to the
detected tool points in each frame to remove the effects of camera motion. The Procrustes
algorithm [5] was used to find initial guesses for the transforms Tinitial. Bundle adjustment
was applied on a shifting window of 80 frames to find the optimal transform from each
frame to the first frame.

 N: number of frames in the video

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [𝑇00, 𝑇10, … 𝑇(𝑁−1)0]

The homogeneous transform Ti0 aligns the background marker points in frame i to the

points in frame 0. Ti0 can expressed as 3 Rodrigues angles and a translation.

𝑇𝑖0 = [𝑅
𝑥
𝑦
𝑧

0 1

]

𝑟𝑜𝑑𝑥, 𝑟𝑜𝑑𝑦, 𝑟𝑜𝑑𝑧 = 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒𝑠(𝑅)

The vector Pi0 is used to parameterize Ti0.

𝑃𝑖0 = 1 𝑥 6 𝑣𝑒𝑐𝑡𝑜𝑟

𝑃𝑖0 = [𝑟𝑜𝑑𝑥, 𝑟𝑜𝑑𝑦, 𝑟𝑜𝑑𝑧 , 𝑥, 𝑦, 𝑧]

Pinitial is a vector with the transformations for all N video frames.

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙: 1 𝑥 6𝑁 𝑣𝑒𝑐𝑡𝑜𝑟

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [𝑃00, 𝑃10, … 𝑃(𝑁−1)0]

𝑝𝑜𝑖𝑛𝑡𝑠𝑖 ∶ 3𝐷 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑎𝑟𝑘𝑒𝑟𝑠 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 𝑖

The goal is the minimize error the error: min (𝑇𝑖0 ∗ 𝑝𝑜𝑖𝑛𝑡𝑠𝑖 − 𝑝𝑜𝑖𝑛𝑡𝑠0)

sumError is the sum of Euclidean distances between the rotated points in frame i and

points in frame 0:

𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖 = ∑ 𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠0[𝑗], 𝑇𝑖0 ∗ 𝑝𝑜𝑖𝑛𝑡𝑠𝑖[𝑗])

15

𝑗=1

The translational error in frame i:

𝑡𝑖 = 𝑚𝑒𝑎𝑛(𝑇𝑖0 ∗ 𝑝𝑜𝑖𝑛𝑡𝑠𝑖) − 𝑚𝑒𝑎𝑛(𝑝𝑜𝑖𝑛𝑡𝑠0)

The rotational error in frame i:

 Find rotation between the Ti0*pointsi and points0 using Procrustes algorithm [5]

Δ𝑅𝑖: 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇𝑖0 ∗ 𝑝𝑜𝑖𝑛𝑡𝑠𝑖 𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡𝑠0

The Rodrigues angles of deltaR are the rotational errors of Ti0

Δ𝑅𝑥𝑖, Δ𝑅𝑦𝑖, Δ𝑅𝑧𝑖 = 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒𝑠(Δ𝑅𝑖)

Return the error of each parameter scaled by the overall distance between the points in the

point cloud:

𝐸𝑟𝑟𝑜𝑟𝑖 = [𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖 ∗ Δ𝑅𝑥𝑖, 𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖 ∗ Δ𝑅𝑦𝑖, 𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖 ∗ Δ𝑅𝑧𝑖, 𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖

∗ 𝑡𝑥𝑖 , 𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖 ∗ 𝑡𝑦𝑖, 𝑠𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑖 ∗ 𝑡𝑧𝑖]

𝐸𝑟𝑟𝑜𝑟: 1 𝑥 6𝑁 𝑣𝑒𝑐𝑡𝑜𝑟

𝐸𝑟𝑟𝑜𝑟 = [𝐸𝑟𝑟𝑜𝑟0, 𝐸𝑟𝑟𝑜𝑟1, … 𝐸𝑟𝑟𝑜𝑟𝑁−1]

Bundle adjustment finds the vector P that minimizes the vector Error.

Frequency Analysis
 The DFT of the stabilized tool trajectory was used to analyze the hand tremor. Three
1-dimensional DFTs were taken of the x-coordinates, y-coordinates, and z-coordinates of
the trajectory. The 3 DFTs were summed to get the maximum possible movement at each
frequency. Physiological hand tremor is between 4-9Hz [2]. The microscope video is

recorded at 30 fps so we can recover motion frequencies up to 15 Hz. A lowpass filter was
applied to the frequency results to isolate the tremulous motion above 5 Hz.

Experiments

To test the marker detection and frequency analysis, stereo microscope video was
recorded of a novice suturing a chicken breast manually and with the Galen robot. To get
stable background fiducials, a chicken holder was 3D printed and painted (see figure 4).

To test the camera motion compensation, a stereo microscope video was recorded
of the background marker moving along a grid with known side lengths. The movement
between the stabilized 3D points and the original triangulated 3D points was compared to
the known movement of the background marker.

Fig. 4: Lab setup with robot and microscope. Background marker being used in suturing
experiment.

Results
Triangulation Accuracy

Fig 5 shows the 3D background marker positions triangulated from a frame in the
suturing_manual_05-04-17-1 video sequence. The ground truth distances between the
markers were measured using digital calipers.

Fig 5: Background markers triangulated from suturing_manual_05-04-17-1 clip

 The distance between all adjacent triangulated markers was computed(see figure 5
left and center). The ground truth distance between markers along the 2 shorter ends of
the chicken holder is 3.955 mm. The ground truth distance between markers along the
longer end of the chicken holder is 5.51 mm. The average distance in the triangulated
chicken holder is 4.02 + 0.22 mm along the short ends and 5.39 + 0.24 mm along the
shorter ends. The triangulation error was < 0.15mm. This shows that the 3D triangulated
points are accurate.

Measured Marker Distances:

 Triangulated Distance True Distance Error
Short Side 4.02 + 0.22 mm 3.955 mm 0.065 mm
Long Side 5.39 + 0.24 mm 5.51 mm 0.13 mm

Camera Motion Compensation
 To test the camera motion compensation, the background marker was moved a
known distance in a stereo microscope video. The triangulated background points were
stabilized. The translation between the stabilized points and the original points was
compared to the known distance the marker was moved. The tracked translation is the
average distance between each stabilized and original point on the background marker.
The tracked movement is the norm of the tracked translation.

True Movement Tracked Movement Error

6.3 mm 6.804 mm 0.504 mm

12.6 mm 13.03 mm 0.430 mm

18.9 mm 20.33 mm 1.43 mm

25.2 mm 25.8247 mm 0.625 mm

Frequency Analysis

 The tool markers were detected in each video frame. Markers near each other were
grouped frame to frame to create tool trajectories. There were multiple green dots on both
surgical tools. This led to multiple markers being detected in each frame and markers from
both tools being detected together. This is problematic because the final trajectory could
have the tool movement from one time counted in multiple trajectories and in the robot
sequences there are a short trajectories detected from the manual tool in the left hand. An
intermediate solution to this was to only analyze the longest trajectory in the video. This
trajectory would not have multiple detections from the same frame or from different tools.
As part of my future work I plan to implement a tool appearance model that can find the
tool position and orientation given a subset of markers. The appearance model will let us
detect the tool position and orientation consistently in every frame.
 In the experimental video from 05-04 the background marker was not fixed rigidly
to the table. The background points were not truly stable so I did not apply the motion
compensation to the detected tool points. In this video, there was minimal camera motion
so the frequency analysis is still meaningful. A lab mate, Radhika, designed a background
marker tray that will rigidly hold the background marker in future experiments.

Without microscope motion compensation:

Fig 6: Tool motion from 1-15 Hz
Video: suturing_robot_05-04-17-1, suturing_manual_05-04-17-1

Fig. 7: Tool tremor from 5-15 Hz
Video: suturing_robot_05-04-17-1, suturing_manual_05-04-17-1

Max Tremulous Motion Magnitude Frequency
Robot Held Tool 0.050 mm 0.14mm
Hand Held Tool 5.22 Hz 6.67 Hz

Fig. 8: 3D tool trajectory from hand held tool (left) and robot held tool (right).
Background markers with and without microscope motion compensation

Conclusion
Significance

 The maximum amplitude of tremulous motion for the robot in the sequence
suturing_robot_05-04-17-1 is 50 microns at 5.22 Hz. The largest tremor in the hand-held
tool is 140 microns at 6.67 Hz. For the robot trajectory analysis, the magnitude of the
tremor slowly decays as the frequency increases. But in the hand-held results there is a
spike in movement at frequencies around 6Hz, 10 Hz, and 14 Hz. We can see the effect of
physiological hand tremor on the tool movement. Comparing the true and filtered tool
trajectories, we can see that the smoothed trajectory follows the true robot trajectory much
more closely than it follows the manual trajectory. The robot is moving in the direction of
intentional motion but disregarding the unintentional hand tremor.

 These results are significant because they illustrate how a surgical robot reduces
hand tremor and make microsurgery safer. This algorithm can be used to measure surgeon
hand tremor and by extension surgeon skill. The inverse trajectory can illustrate the
difference between the surgeon’s desired path and the actual path with hand tremor. These
3D trajectories can also be analyzed to find applications where surgical robots can make
the most difference. Surgeries with complex paths where the desired and actual
trajectories are very different are good candidates to have a surgical robot integrated into
the workflow.

Extensions/ Limitations
 One limitation of this work is that the tools and background were tracked using
color markers. These markers may not be realistic in a real surgical setting. One good thing
about the tool tracking is that it does not require any external tracking systems or bulky
markers. The painted tools have the same profile as the original tools. A more complicated
computer vision approach would be required to track the background without markers in
in-vivo videos.
 My next step in this project is to implement an appearance model for the tool using
the known color markers. With the appearance model, we will be able to get the tool
position and orientation with detecting a subset of all the markers. This way we will not
have to take just the longest continuous trajectory, we will know the tool position
throughout the entire video.

A limitation is the code is not real-time. But re-implementing the python code in C++
would make it much faster. The bundle adjustment is already implemented with a sliding
window so that could be adjusted to get near real-time performance. Tracking the
background markers does not work if all the markers are occluded, but since the markers
were designed for a lab setting it is reasonable to require they aren’t all covered during the
experiment.

Acknowledgements
Thank you Dr. Taylor, Dr. Reiter, and Yunus for your technical support. Thank you Paul for
helping me set up the microscope and robot each time I recorded data. Thank you Abhinav
for designing the background marker. Thank you Radhika for printing the background
marker and for designing and printing the tray. Thank you Alexis for helping me
throughout CIS 1 and CIS2!

Management Summary

Who did what?
 I was a one person team so I did all of the technical work. Abhinav, an
undergraduate student, designed the background marker for me. Radhika printed the
background holder and designed and printed a tray to hold the background marker.

Accomplished versus planned:
 I met all my final delivarables. Originally I had planned to track the tool using an
optical tracker and compare the results with the video tool tracking. We changed these
deliverables part way through the semester because I was falling behind schedule and the
optical tracking results would not necessarily be more accurate than the video tracking
results. I was able get back on schedule and finish the project by the end of the semester.

Next steps:
 The next step for this project is to run the frequency analysis on video of surgeons
suturing animal vessels. I will run the code on new experimental video this summer. The
next step to improve the code is to implement an appearance model for the tool.

Lessons Learned:
 The biggest lesson I learned was to prioritize the deliverables at the beginning of a
project. I spent a bit of time early in the semester trying to figure out when I could set up
the optical tracking system and how to use the OT system. In the end the optical tracking
results weren’t necessary. In the future I will find out what deliverables are essential,
complete those, then try to finish additional work that would be interesting but not
essential.

References

[1] S. P. N. Singhy and C. N. Riviere, "Physiological tremor amplitude during retinal microsurgery," in

Bioengineering Conference, Philadelphia, 2002.

[2] R. N. Stiles, "Frequency and displacement amplitude relations for normal hand tremor," Journal of

Applied Physiology, vol. 40, no. 1, pp. 44-54, 1976.

[3] K. C. Olds, P. Chalasani, P. Pacheco-Lopez, I. Iordachita, L. M. Akst and R. H. Taylor, "Preliminary

evaluation of a new microsurgical robotic system for head and neck surgery," in International

Conference on Intelligent Robots and Systems, Chicago, 2014.

[4] L. Bouarfa, O. Akman, A. Schneider, P. P. Jonker and J. Dankelman, "In-vivo real-time tracking of

surgical instruments in endoscopic video," Minimally Invasive Therapy & Allied Technologies, pp.

129-134, 2012.

[5] R. Taylor, "Computer-Integrated Surgery: Point cloud to point cloud rigid transformations," 2016.

[Online]. Available: http://www.cs.jhu.edu/cista/445/Lectures/Rigid3D3DCalculations.pdf.

[Accessed 11 May 2017].

10600.446/646 – CIS II – Mentors Report

Questionnaire – Project # __4__

10/10 Overall project and progress

 Were you satisfied with the overall technical progress made in the course of the semester? Yes

 Was the total accomplishment appropriate for the number and level (undergrad/graduate) of

students on the project? Yes

 Will the results be useful to you in the future? Yes

 Do you see a prospect for patents or publication to result? No

10/10 Report (which the students should have shared with you)

 Does the project report accurately reflect the scope and accomplishment of the project? Yes

 Were you given an adequate opportunity to review the report? Yes

 Does the report and its appendices, together with the web site, provide sufficient information

that subsequent groups can make effective use of the project results. Yes

 In particular, are any project designs or code adequately documented. Yes

10/10 Web site

 Does the web site reflect the scope and accomplishment of the project? Yes

 Do you wish the web site to remain password protected after May 30? If so, for how long? No

10/10 Management

 Were the students fully engaged in the project? Yes

 How often did they meet with you? Was this enough? Weekly; Yes

 Were the “deliverables” and “dependencies” realistic? Yes

 Was the plan realistic? Were unmet dependencies approached in an effective manner? Yes; Yes

Other comments or suggestions

 Do you have any other comments or suggestions, either about the specific project or about the

overall structure of the course for next year.

Technical Appendices
 Code is available in a zip file on the wiki

Users Guide

Tremor Analysis Users Guide

Molly O’Brien

05/16/17

How to use:

TO USE: put all files in Tremor_Analysis/experiments/Folder_Name

 In the folder:

 Calibration/Left_Ims/*

 > Left calibration images

 > image names should be the frame number

 Calibration/Right_Ims/*

 > Right calibration images saved in

 > image names should be the frame number

 left_video.avi

 > left camera experimental video

 right_video.avi

 > right camera experimental video

 Color_Markers/Background/images

 > images with color markers

 > image names should be the frame number

 Color_Markers/Background/binary_masks

 > masks around marker

 > image names should be the frame number

 Color_Markers/Background/template.png

 > template image

 Color_Markers/Tool/images

 > images with tool markers showing

 > image names should be the frame number

 Color_Markers/Tool/binary_masks

 > masks around markers

 > image names should be the frame number

* experiments/sample_folder is an empty folder with the correct folder structure needed for each

experiment

TO CALL FUNCTION:

cd “path to folder”/Tremor_Analysis/

python runTremorAnalysis [Folder_Name]

Guide to src Files

Folder: src

Tremor_Analysis

Function Tremor_Analysis

Input * Folder_Name: folder with videos, calibration images, and

marker information

Return * saves triangulated 3D points, stabilizing transforms for each

frame, plots frequency analysis

Description * Detects color markers

* Performs camera motion compensation

* Performs frequency analysis

Folder: src/Bundle Adjustment

File: bundleAdjustment.py

Function apply_bundle_adjustment

Input * marker_points: list of array of 3D background marker positions for

each frame

* T: list of array of 4x4 homogeneous transform from frame n to

first frame

Return * T_bundle: list of array of optimal 4x4 homogeneous transform

from frame n to first frame

Description Given 3D background points for each frame in a video, apply bundle

adjustment to get optimal transform from nth frame to first frame.

Applies bundle adjustment with a sliding window of 80 frames.

Function bundleAdjustment

Input * observations: list of array of background points for each frame

* T_initial: list of array of 4x4 initial homogeneous transforms from

each frame to the first frame

Return * P_optimal:1xn*6 vector with the optimal transforms for the n

frames. Each 1x6 vector represents the 4x4 homogeneous transform

from points in frame n to points in frame 0.

Description Given a list of points in each frame and initial transforms for each

frame to the first frame, find the optimal transform from each frame

to the first frame. The goal is to stabilize background points in

microscope video.

Function extractVector

Input * T_list: list of N 4x4 homogeneous transforms

Return * V: 1xN*6 vector. Each transform T_i in T_list is converted into a

1x6 vector v_i = [rx, ry, rz, x, y, z] where rx, ry, and rz are the

Rodrigues angles from the rotation in T_i.

Description Turn a list of N transforms into a 1xN*6 vector. The vector will be

optimized in bundle adjustment

Function ErrorFunction

Input * P: 1xN*6 vector of parameters being optimized

* x: list 3D background points in N frames

Return * error: 1xN*6 vector, error associated with each transform

parameter in P.

Description Compute the error for a given vector of transforms P being

optimized in bundle adjustment. Error for transform i is proportional

to the distance and rotation between the points in frame 0 and frame

i * transform i

Function ExtractTransforms

Input * P: 1xN*6 vector (3 Rodrigues angles, 3 translation variables)

Return * T: list of N 4x4 homogeneous transforms

Description Given a vector P with transforms for N frames, extract the

transformation for each frame. Return a list of transforms.

Function FormTransform

Input * V: 1x6 array (3 Rodrigues angles, 3 translation)

Return * 4x4 homogeneous transform

Description Given Rodrigues angles and translation, form a homogeneous

transform.

Function FindError

Input * points1: Nx3 array of points

* points2: Nx3 array of points

Return * error: 1x6 array of error, sumDistances*[rx ry rz x y z] of rotation

between point clouds then translation btwn point clouds

Description Given 2 pairs of corresponding 3D points, find the rotation and

translation error between the point clouds. Weight the rotation and

translation errors by the sum of distances between corresponding

points in the two point clouds.

Function rotatePoints

Input * points: Nx3 array of points

* T: 4x4 homogeneous transform

Return * points_rot: points transformed by T

Description Given a list of 3D points, transform by given 4x4 homogeneous

transform.

Function QuatToRotM

Input * q: quaternion with the scalar value first [qw, qx, qy, qz]

Return * R: 3x3 rigid rotation matrix

Description Turn a quaternion into a rotation matrix, assumed quaternion: q = [w

x y z] where w is the scalar, and x y z is the vector

Function dist

Input * x: point 1

* y: point 2

Return * D: distance

Description Find the Euclidean distance between two points with the same

dimension.

Folder: src/Camera Calibration

File: blobParamsApp

Function createBlobDetectorFile

Input * Folder_Name: directory with sample images

* tool_hist: color histogram for tool markers

* N_tool: the channel of the probability image with the tool blob

detection

Return * min_area: int, minimum area of tool marker blobs

* max_area: int, max area of tool marker blobs

Description Let users interactively set blob size parameters for blob detection in

tool tracking.

Function findGoodBlobs

Input * image: image from video

* prob_im: tool marker probability image of image

Return * min_area: int, minimum area of tool marker blobs

* max_area: int, max area of tool marker blobs

Description Detect blobs in marker probability image. Let the user change the

desired blob size until all markers are detected.

File: stereoCalibration

Function stereoCalibration

Input * left_dir: folder with left calibration images

* right_dir: folder with right calibration images

* camCalFileName: file name to save calibration results

* stereoCalFileName: file name to save stereo calibration results

* output: file where results & debugging info are saved

Return * ObjectPoints: the 3D checkerboard corner positions used in

calibration

* leftCalIms: the left images were the L & R ims had checkerboards

detected (and were used in calibration)

* rightCalIms: the right images that were used in calibration

Description Given left and right images from a stereo camera find the stereo

calibration and stereo rectification matrices

File: ICP

Function findTransform

Input * A: point cloud 1 (points ordered so that pt 1 in A matches pt 1 in

B)

* B: point cloud 2

Return * R: rotation between A and B

* t: translation between A and B

Description Find the rotation between 2 point clouds A and B with point

correspondences such that:

R*A + t = B

Function quatToRotM (see Bundle Adjustment)

Function stabilizePoints

Input * points3D: list of 3D point cloud found in each frame

* T: T[i] is the transform from frame i's cooridnate to frame (i-

1)'s coordinates. T[0]*T[1]*...T[i]*points3D[i] transforms

points3D[i] into the first frame's coordinates

Return * points3D from all frames transformed into first frame's coordinates

Description Read in 3D point clouds from video frame and frame-to-frame

transforms. Apply frame-to-frame transform iteratively to transform

each point cloud into the first frame's coordinates

Function rotatePoints (see Bundle Adjustment)

File: loadCheckerBoard

Function loadCheckerboard

Input * num: which checkerboard being used. Parameters can be saved for

multiple physical checkerboards

* num_ims: number of calibration images

Return * objectPoints: the 3D coordinates of internal checkerboard corners

in world cooridnates

Description Create calibration points for checkerboard in "world" coordinates

File: loadParams

Function LoadCamCal

Input * filename: camera calibration filename

Return * foundL: boolean array, true for left calibration images where

checkerboard was found

* rvecsL: vector of camera rotation vectors with respect to

checkerboards in left calibration images

* tvecsL: vector of camera translation vectors with respect to

checkerboards in left calibration images

* foundR: boolean array, true for right calibration images where

checkerboard was found

* rvecsR: vector of camera rotation vectors with respect to

checkerboards in right calibration images

* tvecsR: vector of camera translation vectors with respect to

checkerboards in right calibration images

* image_list: list of calibration image names

Description load camera calibration results

Function LoadSterCal

Input * filename: stereo calibration filename

Return * retval: RMS reprojection error (for a good calibration it should be

~ 0.1-1 pixels)

* cameraMatrixL: projection matrix for left camera. = [f_x 0 c_x; o

f_y c_y; 0 0 1]. f_x, f_y: x/y focal length. (c_x, c_y): principle pt

(center of image).

* distCoeffsL: distortion coefficients of left camera, (k1, k2, p1, p2,

k3, k4, k5, k6) k's: radial distortion, p's: tangential distortion

* cameraMatrixR: projection matrix for right camera

* distCoeffsR: distortion coefficients for right camera

R: rotation matrix btwn 1st and 2nd image (L and R image)

T: translation btwn L & R camera coordinate systems

E: essential matrix

F: fundamental matrix

Description Load stereo calibration results

File: readInCalIms

Function readInCalIms

Input * left_dir: folder containing left images

* right_dir: folder containing right images

* output: file where results & debugging info are saved

Return * left_ims: list with left calibration images

* right_ims: list with right calibration images

* image_list: list of calibration image names

Description read in images for stereo calibration from left_im_folder and

right_im_folder

File: triangulate

Function triangulate

Input * camCalFile: camera calibration filename

* sterCalFile: stereo calibration filename

* pointsL: feature positions (in pixels) in left image

* pointsR: feature positions (in pixels) in right image

Return * worldPoints: feature points in 3D camera coordinates

Description Given feature position in left and right image, find point position in

3D camera coordinates.

Function formA

Input * pointL: feature position (in pixels) in left image

* projL: projection matrix for left image

* pointR: feature position (in pixels) in right image

* projR: projection matrix for right image

Return * A: [4x3] matrix, will be used to triangulate 3D point position

Description Given points in left and right images and left and right projection

matrices, form matrix A to be used for triangulation.

Function formB

Input * pointL: feature position (in pixels) in left image

* projL: projection matrix for left image

* pointR: feature position (in pixels) in right image

* projR: projection matrix for right image

Return * b: [4x1] vector, will be used to triangulate 3D point position

Description Given points in left and right images and left and right projection

matrices, form matrix b to be used for triangulation.

File: undistortStereoIms

Function undistortStereoIms

Input * sterCalFile: stereo calibration filename

* imageL: left image with lense distortion

* imageR: right image with lense distortion

Return * undistortL: left image with lense distortion removed

* undistortR: right image with lense distortion removed

Description Given camera calibration parameters, remove lense distortion.

File: computeCameraMovement

Function computeCameraMovement

Input * capLeft: left video

* capRight: right video

* HistInfo: list of color marker histogram info. For each type of

color marker the list has [color marker histogram, number of

Gaussian Mixture Model modes, probability image channel for

detections, histogram string key, (if tool min blob detection area,

max blob detection area)].

* camCalFile: camera calibration file

* sterCalFile: stereo calibration file

* outputFile: text file to write program info to

* trialName: experiment name

* outL: left output video

* outR: right output video

* template_L: background marker template for left video

* template_points_L: center of background markers in left template

image

* template_R: background marker template for right video

* template_points_R: center of background markers in right

template image

Return * marker_points3D: list of 3D background points in each video

frame

* tool_points3D: list of 3D tool points in each video frame

* frameTransform: 4x4 homogeneous transform from each frame to

the first frame

Description * read in calibration files

* take in left and right videos

* detect color markers, match in left and right frames

* triangulate a 3D feature point cloud for each frame

* estimate the 3D transform between each frame

Function triangulate_marker_points

Input * frameL: left image

* frameR: right image

* HistInfo: color histogram info for each color marker

* camCalFile: camera calibration file

* sterCalFile: stereo calibration file

* outputFile: text file to write program info to

* trialName: experiment name

* outL: left output video

* outR: right output video

* template_L: background marker template for left video

* template_points_L: center of background markers in left template

image

* template_R: background marker template for right video

* template_points_R: center of background markers in right

template image

* frameCount: current frame number

* prevMarkerParams: the rotation and translation of the background

markers in the previous frame

Return * marker_points: 3D background marker positions

* tool_points: 3D tool marker positions

* bestMarkerMatchParams: the best rotation and translation of the

background markers in the left and right frames

* marker_matches: background marker points in the left and right

frames

Description * read in left and right images

* compute marker probability images for each different kind of

marker

* match background marker to template

* detect centers of other markers

* return 3D locations of markers

Function saveVideo

Input * name: video name

* points: list of 3D points

Return Saves a video

Description Takes in a sequence of 3D point clouds, saves each points cloud as a

frame in the video.

Function saveVideoMarkersAndTools

Input * name: video name

* marker_points: list of 3D background marker points

* tool_points: list of 3D tool marker points

Return Saves a video

Description Takes in a 3D point clouds of marker and tool points, saves

animation of 3D points.

Function updatePoints

Input

Return

Description Helper function to update points in video being saved with marker

and tool 3D points

Function updatePoints1PtCloud

Input

Return

Description Helper function to update points in video being saved with one point

cloud

File: dist

Function dist (see Bundle Adjustment)

Folder: src/Color Marker Detection

File: blobDetector

Function MSERBlobDetector

Input * image: probability image

* min_area: minimum marker blob area

* max_area: maximum marker blob area

Return * keypoints: blob keypoints

Description Find blobs in input image.

Function pruneKeypoints

Input * keypoints: keypoints

Return * good_keypoints: pruned keypoints, require at distance of at

least 2 pixels between keypoints

Description Get one keypoint at each location (ignore multiple detections)

File: blobMatch

Function BlobMatch

Input * frame1: image 1

* frame2: image 2

* HistInfo: list of color marker histogram info. For each type of

color marker the list has [color marker histogram, number of

Gaussian Mixture Model modes, probability image channel for

detections, histogram string key, (if tool min blob detection area,

max blob detection area)].

* frameNum: frame number

Return * matches1: array of feature point locations in image 1

* matches2: corresponding array of feature point locations in

image 2

* kp1: array of keypoints in image 1

* kp2: corresponding array of keypoints in image 2

Description Given 2 images, find blobs, match between the images.

Function findMatches

Input * points1: feature points in frame 1

* points2: feature points in frame 2

* d: max distance allowed between matching feature point locations

in 2 images

Return * matches1: array with points in points1 st F*points1 - points2 < d

* matches2: array with points in points2 st F*points2 - points2 < d

* matchKp1: array of keypoints in image 1

* matchKp2: corresponding array of keypoints in image 2

Description Match marker feature points between left and right images.

File: createMarkerHistFile

Function createMarkerHistFile

Input * Folder_Name: experiment folder name

* background_Hist: color histogram for background markers

* tool_Hist: color histogram for tool markers

* N_m: number of Gaussian mixture model modes for the

background marker probability

* N_t: number of Gaussian mixture model modes for the tool marker

probability

Return * N_m_select: channel of background probability image with

background marker detections

* N_t_select: channel of tool probability image with tool marker

detections

Description Let the user pick which probability image channel gives good color

marker detections.

File: greedyMatch

Function greedyMatch

Input * points1: first point cloud

* points2: second point cloud

Return * ordered_points1: points in first point cloud orders so

ordered_points1[i] matches with ordered_points2[i]

* ordered_points2: points in second point cloud orders so

ordered_points1[i] matches with ordered_points2[i]

Description Given 2 unordered sets of corresponding points, find matches using

greedy search.

File: markerHistogramExtractor

Function markerHistogramExtractor

Input * image dir: directory where reference marker images are

* mask dir: directory where binary marker masks are

Return * H_hist: histogram in Hue space

* S_hist: histogram in Saturation space

Description Given images, binary masks for the markers compute a color

histogram for the color marker.

Function ComputeGaussMixModel

Input * N: int, number of clusters

* Hist: histogram computed with np.histogram2d

Return * em: Gaussian mixture model

Description Given a histogram, compute a Gaussian Mixture Model with N

clusters.

Function ComputeMarkerProb

Input * image_dir: directory where images live

* GMM: GaussMixModel with prob pixel val in H&S was a marker

* N: number of modes in GMM

* val_thresh: min value required to be considered to be a marker,

needed for blue markers because low val, blue areas are often

shadows

Return * probIm: binary image, white pixel = high marker prob

Description Given images, hue and saturation histograms of markers, compute

the the probability of each pixel in images of being a marker.

Function markerMatch

Input * image: binary probability image, white pixels = high marker prob

* templateIm: binary image with ground truth indv marker

positions. The marker is rigid so the relative pos of indv markers is

constant

* templatePts: pixel locations of centers of indv markers in

markerIm

* prevEst: boolean flag, are there previous match parameters?

* prevParams: translation and rotation of marker match in previous

frame

Return * imagePts: pixel locations of centers of indv markers in image

* params: translation and rotation of marker match

Description Match a marker template image to a marker probability image.

Return location of all marker keypoints. Check possible marker

translations and rotations.

Function RotatePoints2D

Input * points: array of 2D points

* R: 2D rotation

* t: 2D translation

Return * worldPoints: transformed points

Description Transform 2D points

Folder: src/Frequency Analysis

File: buildTrajectory

Function BuildTrajectory

Input * list of 3D point clouds in video frames

Return * list of position trajectories

Description Take in cloud of 3D points for video frame, associate points across

frames to generate trajectories.

Function PruneTraj

Input * traj: list of trajectories

Return * longTraj: list of long trajectories

Description Only save trajectories with len> MIN_LEN.

Function buildXYZ_Trajectories

Input * trajectory: trajectory of 3D points

Return * x_traj: trajectory of x coordinates

* y_traj: trajectory of y coordinates

* z_traj: trajectory of z coordinates

Description Take trajectories of 3D points and seperate into list of x, y, and z

coordinates.

Function LinkToolTrajs

Input * trajectories: list of absolute trajectories

Return * linked_traj: long trajectory with relative positions from all

trajectories

Description Given short, absolute trajectories, link into 1 continuous trajectory

by subtracting the translational offset between traj_n-1[last] and

traj_n[first].

Function frequencyAnalysis

Input * function: signal to take DFT of

* FsBy2: sampling frequency / 2

Return * f_tremor: the DFT magnitude of function in tremor range

Description Given a function and a sampling frequency, take the DFT, convert to

angle and magnitude representation, high pass filter to see tremor,

compare 3D trajectory with and without tremor.

Function FilterTremor

Input * w: array with frequency corresponding to each element in f (Hz)

* f: frequency component magnitudes

Return * f: f filtered so components above tremor threshold are 0

* w: w (same as before)

Description Given trajectory frequency analysis results, find the frequency

components magnitude in the tremor region.

Function ComparePaths

Input * f: frequency component magnitudes

* tremor_thresh: tremor threshold (Hz)

* w: array with frequency corresponding to each element in f (Hz)

Return * plot 3D trajectories

Description Given a DFT and a tremor threshold plot the path with tremor and

the path without.

Function InverseToPath

Input * fx: DFT(x(t))

* fy: DFT(y(t))

* fz: DFT(z(t))

Return * path: 3D path in time

Description Given a DFT, find the path in world coordinates.

Function ConvertDFT

Input * f: DFT in OpenCV format

* N: length of original signal

* FsBy2: sampling frequency / 2

Return * f_mag: magnitude of frequency response at each frequency

* f_ang: angle of frequency response at each frequency

* w: array with frequency corresponding to each element in f (Hz)

Description Convert DFT from OpenCV format to magnitude and angle.

Function RunFrequencyAnalysis

Input * tool_points3D: 3D trajectory

Return * tool_x_linked: magnitude of frequency response of x(t) from

linked trajectories (see linkToolTraj)

* tool_y_linked: magnitude of frequency response of y(t) from

linked trajectories (see linkToolTraj)

* tool_z_linked: magnitude of frequency response of z(t) from

linked trajectories (see linkToolTraj)

* Fs/2: sampling frequency / 2

Description Call this function to run the frequency analysis on a set of 3D points.

Function CompareRobotAndManual

Input None, manually change experiment name

Return * Plots hand-held and robot-held tool tracking results side by side

Description Plot hand-held and robot-held tool tracking results side by side.

Function beforeAfterMotionCompensation

Input None

Return Plots tracking results with and without camera motion compensation

side by side.

Description Plot tracking results with and without camera motion compensation

side by side.

