Design and Evaluation of a Bioelectric Guidewire

Erin Sutton May 4, 2017

Clinical Need

- 8 million intravascular procedures performed under fluoroscopy each year ^{Schauer 2009}
- Radiation dose equivalent to 250-3500 chest x-rays CDRH 2010
- Pediatric, pregnant patients especially vulnerable
- Technically challenging

Can we meet these challenges without radiation?

Inspiration

- electric fish use vision and electrosense to characterize and localize objects
- EOD creates electric field
- measure changes to electric field caused by objects of different impedance

In Vivo Catheter Test

Bioelectric Navigation

Project Goal

The state of the art for intravascular navigation is to navigate a guidewire under fluoroscopy to the area of interest then advance a catheter over the guidewire. The current BN prototype uses a commercially available, nonirrigated 6F catheter, too large to be used as a guidewire. The goal of this project is to create a guidewire based on the BN technology.

C Healthwise, Incorporated

Team

• Erin Sutton

- Bernhard Fuerst
- Nassir Navab
- Noah Cowan

Source: Miller-Stephenson Medical

Work Plan

- Research guidewire construction
- Simulate 3-electrode guidewire in COMSOL
- Design guidewire
 - ✤ Define design constraints
 - Fully develop at least 3 designs
 - Perform decision analysis with mentors to pick design
 - ✤ Improve embodiment design
 - ✤ BOM
- Build guidewire
- Test guidewire in acrylic phantom
 - Measure voltage as guidewire passes through all paths
 - ✤ Use video as ground truth
 - Compare results with catheter's performance
 - Detect branches as small as 2 mm

- Comsol: Electric Currents Module, Parametric Study
- Spacing based on Kassab et al. Ann Biomed Eng. 2004
- Configurable electrodes

"Spring"

Copper wire soldered to copper wire

"Cylinder"

 Copper wire soldered to Pt cylinders

"Braid"

- Copper braid wound around core
- Selectively exposed wire

Design Alternatives

Decision Analysis

Embodiment Design

- 0.014" commercial guidewire core
- 0.035" Pt cylinders
- 34 AWG coated stainless steel wire

Experimental Setup

- phantom in 0.9% NaCl bath
- camera records guidewire trajectory as it is drawn through 6 paths at 1-2 mm/s
- signal to input electrode is ±5 mV at 730 Hz at constant 18 µA
- voltage between electrodes amplified and filtered
- DFT and matching in Matlab

Results

Minimum	Expected	Maximum
Project Plan report and presentation		
simulation with single stenosis	simulation in phantom's main path	simulation with configurable electrodes
repaired current sources	replacement current sources	design for new current sources
CAD design of a single guidewire	several CAD designs for guidewire	
Checkpoint presentation		
working guidewire prototype		
experiment design report		ACUC submission for <i>in</i> <i>vivo</i> experiment
experimental results from acrylic phantom study		results from experiment in gelatin phantom
Final poster and report		

Next Steps

- Guidwire
 - professional prototype
 - ✤ cadaver and *in vivo* studies
- Catheter
 - ✤ in vivo study
 - software: GUI and matching algorithm
 - add direction detection

Procedures

Let's Graduate!

- CIS II final poster May 18, 2:30-5
- catheter paper May
- thesis June
- defense early July
- vacation lolz
- have baby August 10-ish
- thesis edits October
- start job November

References

- D.A. Schauer and O.W. Linton. NCRP Report No. 160, Ionizing radiation exposure of the population of the United States, medical exposure-are we doing less with more, and is there a role for health physicists? *Health Phys*, 97(1):1–5, 2009.
- Center for Devices and Radiological Health. Initiative to reduce unnecessary radiation exposure from medical imaging. US Food and Drug Administration, Feb 2010.
- Stamper, S., Roth, E., Cowan, N., and Fortune, E. (2012).
 Active sensing via movement shapes spatiotemporal patterns of sensory feedback. *J Exp Biol*, 215(9):1567-1574.
- UK Endovascular Trainees. [UKETS]. (2013, June 26). Cardiac Catheterisation Part 1 – Left Coronary. [video]. Retrieved from https://youtu.be/zF8jk_F9Beo.

