

A Novel Planning Paradigm for Augmentation of Osteoporotic Femora Computer Integrated Surgery II, Spring, 2017 Mahsan Bakhtiarinejad and Amirhossein Farvardin, under the auspices of Dr. Mehran Armand and Dr. Ryan Murphy

Introduction

- Osteoporotic hip augmentation with PMMA is a potential therapeutic approach to reduce the risk of fracture due to falls in an elderly individual.
- The goal of this project is to address the potential risk of thermal necrosis associated with femoroplasty.
- > Area of the research
 - Image-guided surgical system
 - Clinical biomechanics

The Problem

- > Osteoporotic hip fractures are responsible for thousands of deaths and billions of dollars of treatment and hospitalization costs in the US annually.
- > The risk of a second hip fracture increases 6-10 times in

Outcomes and Results

- Augmentation significantly increased:
 - ✤ Yield Load : 27.1 %

- elderly with osteoporosis.
- The one-year mortality rate after osteoporotic hip fracture in elderly is 23%.
- Higher volumes of PMMA injection may introduce the risk of thermal necrosis caused by exothermic polymerization of PMMA

The Solution

- New Planning Paradigm for Femoroplasty
 - New Planning approach constrains the injection volume of cement to 10cc
 - Plan was evaluated in 4 • cadaveric experiments

- Temperature evaluation and cooling system development
- COMSOL Finite element (FE) heat transfer model was developed capable of bone temperature estimation prior to augmentation with homogenous material property inside the bone and a uniform heat flow from the bone-cementinterface towards the bone surface

Colling experiment

Lesson Learned & Future Work

Both the COMSOL estimations of the bone surface temperature and cooling system have shown promising first-attempt results

- Cooling system contained a 3mm K-wire attached to an ice-water bath inserted inside the bone cement profile
- Sawbone experiments were conducted with static and rotating k-wire

Additional cooling experiments and heat transfer simulations are needed to fully validate the outcome of this study

Credits

Both Mahsan and Amirhossein were fully involved in the study and preparation of the results

Publications

Farvardin, A., Bakhtiarinejad, M., Murphy, R.J., and Armand, M., 2017. Novel Planning Paradigm for Osteoporotic Bone Augmentation: A cadaver validation study. Journal of *biomechanics* [In Progress]

Support by and Acknowledgements

- We thank Mr. Demetries Boston, Dr. Stephen Belkoff, Michael Pozin, Prof. Russell Taylor, Dr. Armand and Dr. Murphy for their help with this project.
- This work was supported by NIH Grant No. R21-AR063815

Engineering Research Center for Computer Integrated Surgical Systems and Technology

