Introduction

- Osteoporotic hip augmentation with PMMA is a potential therapeutic approach to reduce the risk of fracture due to falls in an elderly individual.
- The goal of this project is to address the potential risk of thermal necrosis associated with femoroplasty.
- Area of the research
 - Image-guided surgical system
 - Clinical biomechanics

The Problem

- Osteoporotic hip fractures are responsible for thousands of deaths and billions of dollars of treatment and hospitalization costs in the US annually.
- The risk of a second hip fracture increases 6-10 times in elderly with osteoporosis.
- The one-year mortality rate after osteoporotic hip fracture in elderly is 23%.
- Higher volumes of PMMA injection may introduce the risk of thermal necrosis caused by exothermic polymerization of PMMA

The Solution

- New Planning Paradigm for Femoroplasty
 - New Planning approach constrains the injection volume of cement to 10cc
 - Plan was evaluated in 4 cadaveric experiments

- Temperature evaluation and cooling system development
 - COMSOL Finite element (FE) heat transfer model was developed capable of bone temperature estimation prior to augmentation with homogenous material property inside the bone and a uniform heat flow from the bone-cement-interface towards the bone surface
 - Cooling system contained a 3mm K-wire attached to an ice-water bath inserted inside the bone cement profile
 - Sawbone experiments were conducted with static and rotating k-wire

Outcomes and Results

- Augmentation significantly increased:
 - Yield Load: 27.1%
 - Yield Energy: 48.8%

The Problem

- Osteoporotic hip fractures are responsible for thousands of deaths and billions of dollars of treatment and hospitalization costs in the US annually.
- The risk of a second hip fracture increases 6-10 times in elderly with osteoporosis.
- The one-year mortality rate after osteoporotic hip fracture in elderly is 23%.
- Higher volumes of PMMA injection may introduce the risk of thermal necrosis caused by exothermic polymerization of PMMA

The Solution

- New Planning Paradigm for Femoroplasty
 - New Planning approach constrains the injection volume of cement to 10cc
 - Plan was evaluated in 4 cadaveric experiments

- Temperature evaluation and cooling system development
 - COMSOL Finite element (FE) heat transfer model was developed capable of bone temperature estimation prior to augmentation with homogenous material property inside the bone and a uniform heat flow from the bone-cement-interface towards the bone surface
 - Cooling system contained a 3mm K-wire attached to an ice-water bath inserted inside the bone cement profile
 - Sawbone experiments were conducted with static and rotating k-wire

Lesson Learned & Future Work

- Both the COMSOL estimations of the bone surface temperature and cooling system have shown promising first-attempt results
- Additional cooling experiments and heat transfer simulations are needed to fully validate the outcome of this study

Credits

- Both Mahsan and Amirhossein were fully involved in the study and preparation of the results

Publications