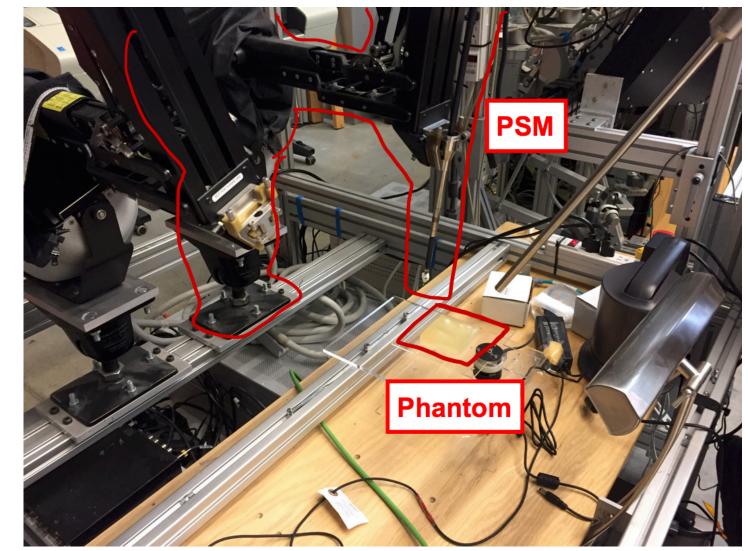
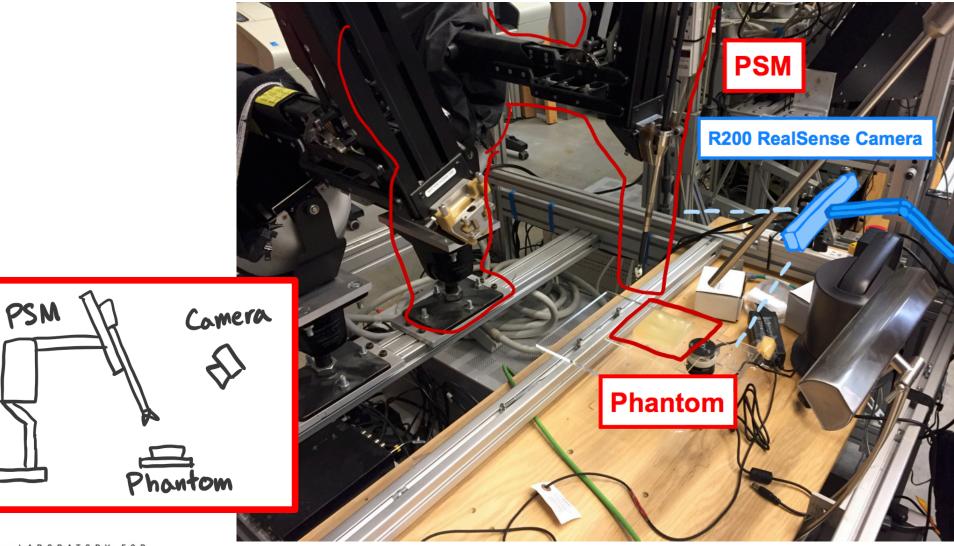

DVRK stereo camera calibration and model registration

Group 12: Peter Ahn and Mengze Xu Mentors: Preetham Chalasani and Anton Deguet Feb 21, 2017


- Goal: Register surfaces to the robot (Patient Side Manipulator, PSM)
- Current Method: Move robot to touch the surface
- What we want to do: Using calibrated stereo camera to substitute touching

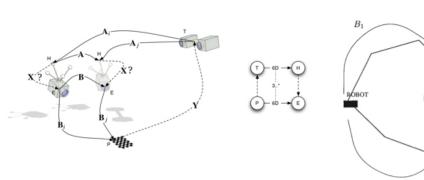


ERCICISST CIISEROS

ERCICISST CIISEROS

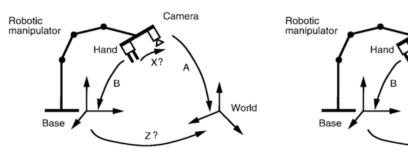
ERC | CISST CIIS ... ROS

Technical Approach – Hand Eye Calibration Two Common Solutions • Static Camera and mo


_______WORLD

World

Camera


AX=XB

Move the hand and observe/ perceive the movement of the eye (or target)

AX=ZB

Simultaneous estimation of the hand-eye transformation and the pose of the robot in the world

http://robotics.stackexchange.com/questions/7163/hand-eye-calibration

ERC | CISST CIIS ... ROS

- Static Camera and moving markers with robot
- Still AX=ZB solvable[1]
- Using tags in ArUco package as markers

[1] Mili Shah, Roger D Eastman, and Tsai Hong. An overview of robot-sensor calibration methods for evaluation of perception systems. In: Proceedings of the Workshop on Performance Metrics for Intelligent Systems. ACM, 2012, pp. 1520. isbn: 1450311261.

Technical Approach – Hand Eye Calibration

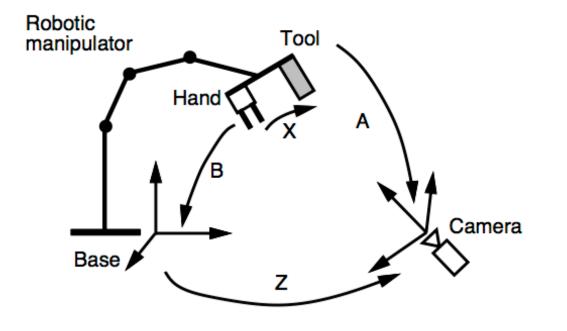
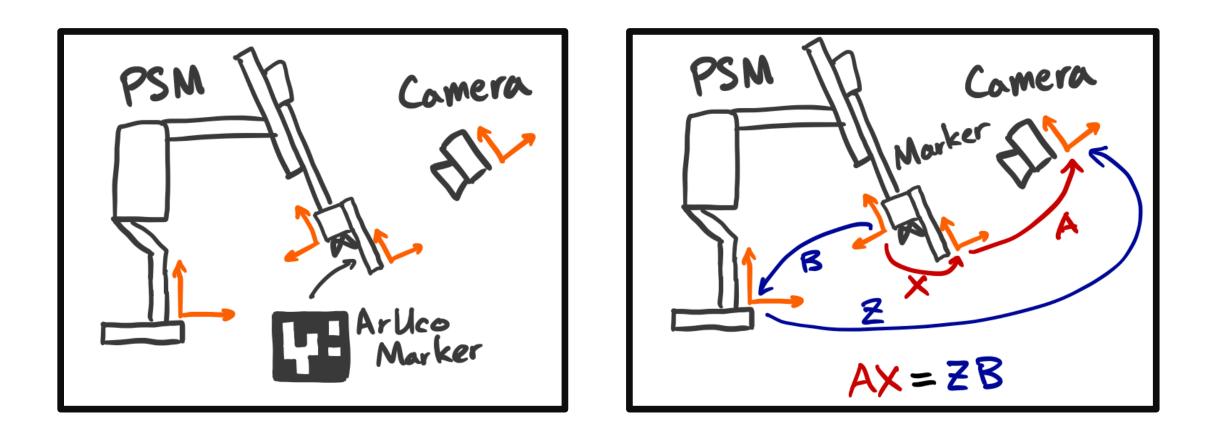


Fig. 2. Robot/eye (\mathbf{Z}) and hand/tool (\mathbf{X}) calibration. The tool is mounted onto the gripper and tool motions are determined by observing tool feature points with a camera. The world frame is, in this case, identical with the camera frame.

https://hal.inria.fr/inria-00590087/file/DornaikaHoraud-tra.pdf


ERC | CISST CIIS ... ROS

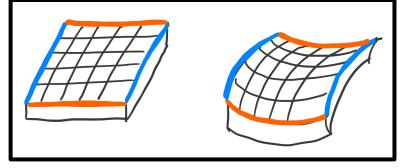
- Static Camera and moving markers with robot
- Still AX=ZB solvable[1]
- Using tags in ArUco package as markers

[1] Mili Shah, Roger D Eastman, and Tsai Hong. An overview of robot-sensor calibration methods for evaluation of perception systems. In: Proceedings of the Workshop on Performance Metrics for Intelligent Systems. ACM, 2012, pp. 1520. isbn: 1450311261.

Technical Approach – Hand Eye Calibration

Technical Approach – Surface Detection

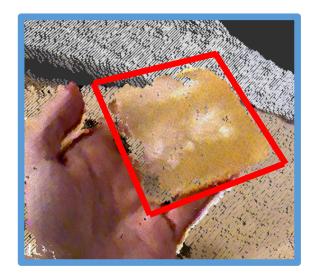
RGB Image


Depth Image

Technical Approach – Estimate Contours

Edge Detection

- Detect the edge of the phantom
- Track the deformation of the edges of the phantom
- Use the deformation of the edges to estimate the deformed surface


Estimation from model

With prior knowledge : Model of undeform phantom

Technical Approach – Detect Unknown Surfaces

- Without prior knowledge
- Moving camera to reconstruct the surface
- Need better stereo camera and opaque phantom

Deliverables

Minimum

• Codes and error estimation of hand-eye calibration in ROS

Expected

• Codes for estimating the contour of the surface

Maximum

• Algorithm to detect the unknown surface

Schedule

2/12 - 2/18 : Finish Closed Proposal and presentation.
2/19 - 2/25 : Prepare programming and hardware environment
2/26 - 3/04 : Prepare ArUco Marker and Marker Adaptor
3/05 - 3/11 : Coding and testing (with ArUco Marker)
Milestone : Completed hand-eye calibration codes

3/12 - 3/18 : coding using existing library (OpenCV)
3/19 - 3/25 : continue coding and prepare seminar presentation
3/26 - 4/01 : testing with real case and modifying
4/01 - 4/07 : testing and modifying
4/07 - 4/13 : testing and modifying
Milestone : Codes for estimating the contour of the surface

4/14 - 4/20 : Exploring algorithms
4/21 - 4/27 : Exploring algorithms and testing
4/28 - 5/04 : Final testing and Documentation
Milestone : Algorithm to detect the unknown surface

5/05 - 5/11 : Final reports 5/12 - 5/18 : Final Presentation

Dependencies

Dependencies		How to Resolve	Status
	dVRK System	Access to LCSR Lab	Resolved
	Stereo / Depth Camera	Access to LCSR Lab	Resolved
Hardware	3D Printer	Access to 3D Printer Room	Resolved (Peter)
	Opaque Phantom	Develop another phantom with different coloring dye	Pending [Not immediate concern]
	ROS	Open source codes	Resolved
Software	ArUco / OpenCV Package	Open source codes	Resolved
	Solidworks (CAD)	WSE IT website	Resolved (Peter)
	MATLAB	WSE IT website	Resolved

Management Plan

• Weekly meeting with Preetham and Anton (Every Wednesday 1:00 PM).

Person	Work	Timeline
	Research and setup R200 RealSense Camera on personal laptop	Done (2/20/17)
Joonghyun (Peter) Ahn	Development of CAD model for the ArUco Marker Adapter	In progress (by 2/25/17)
	3D printing of the CAD model	In progress (by 3/1/17)
	Research in Calibration methods	Done (2/19/17)
Mengze Xu	Learn ROS dVRK	In progress (by 2/28/17)
	Learn ArUco / OpenCV package	In progress (by 3/3/17)

ERC | CISST CIIS ... ROS

Reading List

- Mili Shah, Roger D Eastman, and Tsai Hong. An overview of robotsensor calibration methods for evaluation of perception systems. In: Proceedings of the Workshop on Performance Metrics for Intelligent Systems. ACM, 2012, pp. 1520. isbn: 1450311261.
- <u>https://www.uco.es/investiga/grupos/ava/node/26</u>

Sensing + Robotics **ERC** | CISST CISSE ROS

- <u>http://wiki.ros.org/aruco</u>
- <u>http://robotics.stackexchange.com/questions/7163/hand-eye-calibration</u>
- <u>https://hal.inria.fr/inria-00590087/file/DornaikaHoraud-tra.pdf</u>