Software for an Intra-Operative "Kinect" with a Flexible Endoscope

Group 13: Shohini Ghosh and Elli Tian Mentors: Dr. Austin Reiter and Dr. Russell Taylor Computer Integrated Surgery, Spring 2017

Relevance

- "Depth cameras" have spurred the popularity and approachability of real-time 3D reconstruction
- 3D reconstruction based on images captured by endoscope
- Small laser allows for structured light approach with endoscope

Technical Approach

(using SLAM algorithm)

Technical Approach - Calibration

- Training
 - Collect "training" images of laser pattern on normal plane at known distances ranging from 12cm to 19cm
 - Identify each laser point in all training images
 - Determine how center point and radius of each laser point varies with distance of plane
- Testing
 - For new "test" images, identify each laser point then consider center point location and radius to estimate distance (linearly interpolate between training image distances)

Mechanical Fixation

Current Setup

Camera Calibration & Distortion Correction

Original

Distortion Corrected

SampleData

<u>12cm</u>

Segmenting Laser Points

<u>Original</u>

Labeled Laser Points

Matching Laser Points

<u>15cm</u>

Initial Results for X Coordinate

Initial Results for Y Coordinate

Calibration Testing Plan

- Collect "test" images at known distances and verify that our distance estimate is correct for:
 - Normal plane
 - Irregular surface
 - In varying lighting conditions
 - Against red background

Planned Approach for 3D Reconstruction

- Need to move camera to collect images for 3D reconstruction
 - Need many images because of sparse laser pattern
- SLAM (simultaneous localization and mapping)
 - BreezySLAM for MATLAB
- Test on simple and complex objects

Updated Deliverables

- Minimum
 - Rigid fixation method of camera to laser
 - Template for laser pattern in appropriate coordinates relative to camera
 - Code to compute depth map for camera's field of view**
- Expected
 - Code to create 3D reconstruction of simple objects and track camera movement relative to static scene**
- Maximum
 - Code to create 3D reconstruction of complex objects and track camera movement relative to static scene**

**Includes testing to verify mm accuracy

Updated Timeline

02/19/17 **Rigid Fixation of Camera and Laser Develop Calibration Code Collect Laser Pattern Data** Create Testing Setup for Calibration Develop Testing Scripts for Calibration Code Collect Data to Test Calibration Accuracy **Develop 3D Reconstruction Code** Plan Testing for 3D Reconstruction Collect Data to Test Reconstruction Accuracy Develop Camera Tracking Code Create Testing Setup for Camera Tracking Collect Data to Test Camera Tracking

Obstacles

- Positioning of laser relative to camera and camera parameter settings

 → Resolved
- Laser pattern dots detected are not always unique
 - Need efficient way to determine if MSER regions are overlapping significantly
- Matching laser pattern dots
 - Sparse laser pattern precludes window matching, need to match individual laser points
 - Radius varies with distance so cross-correlation ineffective
 - $\circ \rightarrow$ Identify laser pattern dot by position relative to rest of pattern

Dependencies

Dependency	Plan for Resolving
Obtaining Tae Soo Kim's prior work	Resolved
Obtaining calibration code	Not needed
Reliable fixation method for camera and laser	Will be resolved by 4/12
SLAM depends on calibration	Calibration code almost complete
Development of testing setup	Work with Dr. Taylor

Questions?

