# Software for an Intra-Operative "Kinect"



Computer Integrated Surgery II Spring 2017 Shohini Ghosh and Elli Tian Mentors: Dr. Austin Reiter and Dr. Russell Taylor



#### Introduction

- We have developed portable software to do 3D reconstruction based on a structured light approach, using a color USB camera and a laser fiber that generates a pseudo-random pattern of green dots.
- This software can eventually be adapted to work with the laser fiber inserted down the working channel of a flexible endoscope, and can assist with visualization in the tight spaces imaged during an endoscopy.

# The Problem

 Endoscopy is normally limited by the geometrically distorted view of the operating site that a surgeon is able to see with traditional imaging techniques.

#### **Outcomes and Results**

- 3D reconstruction:
  - Percent of dots matched within 2mm of real distance:
    - 97% on flat plane with data set 1
    - 70% on flat plane with data set 2
    - 73% on simple step of height 12mm (data set 1)
    - 68% on cylinder with radius 80mm (data set 1)
  - Overall system performance limited by accuracy of dot detection and identification





 A structured light approach to 3D reconstruction similar to that used by the Microsoft Kinect can address this issue. A projected light pattern can create feature points on tissue where there were previously no distinguishable features.

### The Solution

- Camera used: Chameleon 1.3 MP Color USB 2.0 with a Fujinon varifocal lens.
- Laser: manufactured by 3Dintegrated; emits a 520nm (green) light at 50mW w/ approx. 4 dots/cm<sup>2</sup>.
- Camera calibration: checkerboard calibration
- Camera-laser calibration: lookup table built relating (x,y) coordinates of dots detected with MSER across images of varying distances
- 3D reconstruction: computed (x,y,z) coordinates for detected dots using lookup table, distance, focal length, and principal point
- Finding dots in realistic setting: evaluated precision and accuracy of SIFT and MSER by counting true positives, false positives, and false negatives projected onto simulated setting (ham)

**Figure 3.** Real world (x, z) coordinates of step at distances 141mm and 129mm (left) and image of physical setup (right).

- Finding dots in realistic setting:
  - MSER was effective and accurate for simple reconstructions, but with time and space optimizations
     SIFT would be a better choice for real-life application



**Figure 4.** L to R: testing setup with ham, laser pattern on ham setup, detected SIFT features, detected MSER features. Images are cropped.

# Future Work

- Increasing accuracy of dot detection algorithms with thresholding, larger range of workable distances, etc.
- Hardware adjustments (e.g. dot pattern with higher density, automatically adjusting aperture)



**Figure 2.** The physical camera-laser setup (left) and the laser pattern projected onto a flat surface 141mm from focal point of the camera (right).



**Figure 3.** Plot of (x,y) pixel coordinates and distance for training data obtained from one data set. Each line represents single dot in laser pattern.

- Integration with SLAM for real-time reconstruction/tracking
- Adaptation to work with laser fiber down working channel
  of endoscope

#### Lessons Learned

- Accurate camera-laser calibration is crucial to accurate 3D reconstruction
- Need way to quickly determine appropriate thresholds in order to refine the results for a variety of environmental conditions

#### Credits

- Elli: mechanical setup, dot detection (SIFT), dynamic 3D reconstruction (SLAM)
- Shohini: mechanical setup, dot detection (MSER), static
  3D reconstruction

## Acknowledgements

• Thank you to Dr. Reiter, Dr. Taylor, and the LCSR for their guidance and support through this project.