
 

Software for an Intra-Operative “Kinect”  
Team Members:​ Shohini Ghosh and Elli Tian 
Mentors:​ Dr. Austin Reiter, Dr. Russell Taylor 

 
Background 
Video-guided minimally invasive surgery can reduce adverse effects for patients through the 
use of an endoscope that is inserted through a small incision instead of open surgery. However, 
endoscopy is limited in that the surgeon only sees a geometrically distorted 2D image of the 
surgical site. It would be desirable for the surgeon to have more accurate information on the 
surface topology of the surgical site from a 3D imaging system as this can guide diagnosis and 
surgery. For example, a collapsed airway that can be difficult to see in a 2D image could be 
clearly visualized using a 3D reconstruction of the space. Stereo reconstruction has been used 
to do reconstruction in endoscopy, but these systems may not perform as well on human tissue 
with few features. A structured light approach to 3D reconstruction can address this issue, as 
the projected light can create feature points on tissue where there were previously no 
distinguishable features. 
 
By using a small camera and laser fiber that projects a pseudo-random pattern of green dots, 
we hope to develop software that will allow for precise and accurate 3D reconstruction of a 
variety of objects. Our goal is to make this software portable and flexible, so that it can 
eventually be adapted for real-time use during surgery with the laser fiber inserted down the 
working channel of a flexible endoscope. 
 
Technical Approach 
Mechanical Setup 
The camera used was the Chameleon 1.3 MP Color USB 2.0 manufactured by Point Grey 
Research (model CMLN-13S2C-CS) with a Fujinon varifocal lens (model YV2.8x2.8SA-2) 
attached. The laser fiber, manufactured by 3Dintegrated, emits a 520nm light at 50mW with 
approximately 4 dots per square centimeter. A 3D printed frame was used to hold the camera 
and laser fiber so that their optical axes were parallel, as shown in Figure 1 below. The camera 
was 1.468 inches in diameter and the laser fiber was 0.1 inches. The frame was printed in two 
symmetric halves and secured with screws, nuts, and washers. 
 

 
Figure 1.​ Mechanical setup of the camera and laser, using a 3D printed frame. 

 



 

The lens was adjusted so that the focal length was maximized and a wide-angle focus was 
achieved. These conditions were maintained as much as possible for all subsequent images in 
order to prevent the need for repeated camera calibration before each image acquisition 
session. The aperture of the lens was sometimes adjusted manually based on the 
environmental conditions in order to capture the laser pattern dots as clearly as possible. 
 
Camera Calibration 
In order to calibrate the camera, 33 images of a checkerboard with known dimensions were 
taken. Then, a camera calibration toolbox (​http://www.vision.caltech.edu/bouguetj/calib_doc/​) 
was used to determine intrinsic camera parameters, including skew, focal length, principal point, 
and distortion coefficients. These parameters were used to un-distort all images collected. This 
calibration also indicated that distances measured from the front of the camera holder to an 
object were 11mm shorter than the true distances of objects from the camera origin. Thus, 
11mm was added to all distances measured for training images collected for camera-laser 
calibration (discussed next). 
 
Camera-Laser Calibration 
Once the camera alone was calibrated, a set of training images were collected of the pattern 
being projected onto a surface normal to the camera’s optical axis. Two data sets of training 
images were collected. The first set of training images was collected for planes ranging from 
12-19cm from the front of the camera holder in 1mm increments (actually 131mm to 201mm); 
three sample calibration images are shown in Figure 2 below. 
 

 
Figure 2.​ Calibration images taken with the laser pattern projected onto a plane at 12cm, 15cm, 
and 19cm from the front of the camera holder (from left to right). 
 
The second set of training images was collected for planes ranging from 5-15cm from the front 
of the camera holder in 5mm increments (actually 61-161mm). For the first data set, the 
aperture was held constant for all images so images at shorter distances had larger dots. For 
the second data set the aperture was manually adjusted to get mid-sized dots in images. 
However, this adjustment between images was not consistent - the aperture was only adjusted 
when judged necessary while moving the camera from shorter to longer distances.  
 
Dots in the laser pattern for each of these images were found by using MSER and filtering the 
results by size and roundness. For each data set a single template training image was selected 
(161mm for first data set, 111mm for second data set) to be used as the template for the dots in 

 

http://www.vision.caltech.edu/bouguetj/calib_doc/


 

laser pattern. This template was used to identify dots across images based on which dot in the 
template training image they corresponded with. For each non-template training image, dot 
correspondences between the non-template training image and the template training image 
were identified. Correspondences were identified by first considering the translation of the 
center of the laser pattern between the images (the center of the laser pattern was determined 
to be the centroid of the brightest points in the image). This translation was assumed to be 
similar for all dots in the pattern, so correspondences were identified by comparing windows 
around each of the dots for only those dots near the expected location (as determined by the 
base translation). A correspondence was only used if both dots are found to be the best match 
for each other. Once these correspondences were established for a given non-template training 
image, information about the pixel coordinates of the center point of each dot in the 
non-template training image was stored. 
 
Based on these data points, a graph of y pixel coordinate vs x pixel coordinate for dot centers 
was created, with a line to represent each dot in the pattern. Each of the points along the line 
represented the pixel coordinates of the center of the dot in a training image at a certain 
distance. Thus, this graph essentially shows the possible locations of the center point of each 
dot in the pattern if the dot is projected onto something at a distance within the range of training 
image distances. Second degree polynomials were fit to the relationship between x and y pixel 
coordinates for each dot center. A plot of these polynomials was stored in a 2D lookup table 
(see Figure 4 right image). Second degree polynomials were also fit to the relationship between 
x pixel coordinate and real world distance for each dot in the laser pattern.  
 
3D Reconstruction 
Dots in testing images were again found by using MSER, then thresholding by size and 
eccentricity. The lookup table described above from camera-laser calibration was first used to 
find correspondences for each dot in the testing image. This was done for each dot separately, 
by finding all lines in the lookup table that are nearby the location of the center of the dot in the 
testing image. Each nearby line represents a dot identified in the template training image and is 
a potential match for the current dot in the testing image because there is some training image 
in which the center of the dot appears near where it is seen in the testing image. If there was 
exactly one possible match, the dot was used to compute a 3D point. If there were no matches 
or multiple possible matches the dot was not used. If a match was identified, the real world z 
coordinate of the 3D point was computed by using the equation relating x pixel coordinate of the 
center of the dot and distance (since the real world z coordinate is equal to the distance). Then, 
using the focal length and optical axis center found from camera calibration, the x and y 
coordinates of the 3D position of the point relative to the camera were computed.  The real 
world x coordinate was calculated as follows: 
 
x​real​ = ( x​dot center, pixel​ - x​principal point, pixel​ )  * d / f​x 

 
Where d represents distance calculated as explained above, f​x​ is the focal length along the x 
axis, x​dot center, pixel​ is the x pixel coordinate of the center of the dot in the new image and  

 



 

x​principal point, pixel​ is the x pixel coordinate of the principal point. The real world y coordinate was 
calculated equivalently. 
 
Finding Dots in Realistic Setting 
In order to evaluate how well laser pattern dots could be found in unknown, irregular, and more 
realistic situations, we simulated the surface imaged during an endoscopy with several pieces of 
ham. We then projected the laser pattern onto the surface without any other external lighting 
conditions in order to simulate conditions during an endoscopy when the endoscope light is 
turned off; this would be necessary because a bright backlight would wash out the laser pattern 
and make consistent dot detection nearly impossible. SIFT and MSER were used to find 
prominent features in the images. The time it took for each feature detector to run was 
determined, and the results were refined by keeping only features that were above a certain 
threshold for green color or within a range of radii. The results were then evaluated by counting 
the number of detected features that overlapped closely with actual laser pattern dots (correct 
matches), the number of features that did not correspond to dots (false positives), and number 
of dots that were not detected (false negatives). 
 
Results/Discussion 
3D Reconstruction 
Dot correspondences between training images were used to determine how the (x,y) pixel 
coordinates of the center of each dot vary with distance. Figure 3 depicts an example of dot 
correspondences identified between training images, with lines drawn between matched dots. It 
is clear that the majority of dots, but not all dots in the laser pattern, were matched. The 
assumption that all dots experience similar translations as distance varies proved to be correct 
as there were no incorrect matches identified on manual inspection of many image pairs. One 
issue with this step is that all training images have dots identified based on dots in the template 
training image, so any dots not found by MSER in the template image are not used for 
computing depths. Thus if a dot was detected in a testing image that was not detected in the 
template image, this dot in the testing image may be incorrectly matched to a different dot in the 
template training image, which would produce incorrect matches and incorrect 3D points 
(contributes to outliers discussed later). 
 

 
Figure 3.​ Dot correspondences between 151mm and 161mm images from data set 1. 

 



 

These dot correspondences were then used to find how (x,y) pixel coordinates of the center point 
of each dot in the laser pattern varied with distance. This data gave us the 3D plot of this 
relationship depicted on the left in Figure 4 where each line in the plot represents a single dot in 
the laser pattern across images. The 2D lookup table with lines representing the possible (x,y) 
pixel coordinates of the center of each dot in the laser pattern is depicted on the right in Figure 4. 
 
 

 
Figure 4.​ Left - Plot of x pixel coordinate, y pixel coordinate, distance for training data in first 
data set. Right - Lookup table used to identify potential matches based on data set 1. Each line 
represents possible coordinates for a given dot in the laser pattern if the dot is projected onto 
something at a distance within the range of distances for training images. 
 
Using this lookup table and equations for each dot relating x pixel coordinate of dot center and 
distance as described earlier, we computed 3D point clouds based on data from various 
images. First, we sought to evaluate our system in a very simple way by doing a 3D 
reconstruction based on one of the training images. It can be seen in Figure 5 that the accuracy 
was generally good but that there were a few outliers. For example, the image at 180mm has 
104 total 3D points generated, of which 101 were within 2mm of the true distance and 3 were 
farther from the true distance (97% of plotted 3D points were good matches). Figure 5 also 
depicts the same data with a surface fit to the points that is close to being a plane at z=180mm. 
These outliers may be surprising since this one of the training images, but they come from the 
fact that a polynomial was fit to the (x,y) pixel coordinates of each dot across images. So, if the 
dot in the training image at 180mm was relatively far from the polynomial fit to the (x,y) pixel 
coordinates across images for that dot, then it may be incorrectly matched to a different dot’s 
polynomial fit instead if that other dot can (at some different distance) appear in a similar 
location in the image.  
 

 



 

 
Figure 5.​ X and Z coordinates of 3D point cloud for training image at 180mm from data set 1 
and surface fit to this point cloud in 3D coordinates. 
 
We then sought to evaluate our system on objects with simple shapes. However, we found that 
our mechanical setup had likely shifted slightly since our training images were collected, as new 
images did not give good dot correspondences in the lookup table. Thus, we collected the 
second data set and on the same day collected images of simple objects on which to test our 
system (to minimize movement of mechanical setup between acquisition of training and testing 
images). However, there were significantly more outliers in this data than there were in the first 
data set, potentially because of the range of distances used (shorter distances produced lower 
quality images) and because a larger range of distances was used (so different dots are more 
likely to appear in the same place in the image at different distances). This difference between 
the data sets can be seen in Figure 6 below. For this second data set, only 78 out of 112 of the 
3D points (70%) were good matches for the training image at 161mm. By manual inspection, we 
determined that most of these outliers came from dots identified in the new image that were not 
present in the template training image that were incorrectly matched to dots identified in the 
template training image that appeared in a similar (x,y) pixel location at a very different distance.  

 
Figure 6.​ 3D point cloud for training image at 161mm from data set 2. 

 



 

 
We attempted to address the large number of incorrect matches (especially in the second 
training data set) by finding multiple potential matches for each dot in a new testing image then 
comparing windows around the dot in the testing image with the window around each of the 
potential match dots in a training image (training image for comparison was selected based on 
what the estimated distance would be if that dot was the correct match), and using the best 
match. However, we found that this did not improve our results, and in some cases produced 
even more outliers. Even setting a minimum threshold for the similarity between these windows 
for the best match found only served to remove more correct matches than incorrect matches. 
Thus, we decided to carry on using our original dot matching approach. 
 
We first tested our setup on a simple step of height 1.2cm using a thin rectangular prism, 
looking at the step straight on so the edge of the step was not visible from the camera. This 
setup was essentially 2 flat planes, with one plane at a distance of 141mm and another at a 
distance of 129mm. For this object, our results were generally good but there were still many 
incorrectly matched points. Out of the 98 points plotted, 72 were good matches within 5mm of 
the actual distance (73%). Our results for the step and a picture of the setup are depicted in 
Figure 7. 
 

 
Figure 7.​ Real world x and z coordinates of step at distances 141mm and 129mm and image of 
setup. 
 
We also evaluated our system on a cylinder with a radius of approximately 80mm placed in front 
of a wall at a distance of 160mm from the camera. Figure 8 depicts the data for this cylindrical 
object and an image of the setup. Again, there are clear outliers but 44 of the 65 3D points 
(68%) are within 5mm of the estimated cylinder position. 
 

 



 

 
Figure 8.​ Real world x and y coordinates of cylinder at 80-160mm away and image of setup. 
 
Overall, for 3D reconstruction we found that although many of the generated 3D points were 
correct, our system’s performance was limited by dot detection and dot identification. Dot 
detection was an issue if a dot was found in a testing image but not in the template training 
image or not in a training image at the same distance as that dot appears in the testing image. 
When this happen, an incorrect match to a different dot may be generated, which can give a 
distance estimate that is completely incorrect. This is the cause of most of the outliers seen in 
the results above. Better dot identification could have solved this problem as these incorrect 
matches would be avoided by correctly identifying dots in testing images. However, dot 
identification is difficult when dots are not detected consistently. One way to resolve this issue 
may be to improve dot detection, which may in turn improve identification of correspondences if 
every dot can be detected in every image. For this reason, we also evaluated different methods 
besides MSER for detecting dots in images (discussed below). However, the best solution to 
this issue of identifying dot correspondences may simply be to have a sufficiently dense dot 
pattern to allow for window matching rather than matching of specific dots. This is similar to 
what the Kinect does and allows for a more dense 3D reconstruction because any window 
containing some laser pattern can be used to compute a depth for that window. However, this 
would require a significant change in hardware, so for the scope of this project we focused on 
software improvements to address this issue. 
 
Finding Dots in Realistic Setting 
The most effective of the feature detectors used to find the laser pattern dots was the 
scale-invariant feature transform (SIFT), which not only computed the locations of the features 
but their scale and orientation as well. Figure 9 shows an example testing setting, where ham 
was used to simulate the surfaces that may be imaged during endoscopy. 
 

 



 

 
Figure 9.​ A sample testing setting using ham to simulate realistic esophageal surfaces (left) and 
the laser pattern projected onto this surface (right). 
 
Figure 10 shows the SIFT features detected in this setting using a variety of green thresholds 
(g) and maximum feature size thresholds (s, in pixels). A total of 152 features are initially 
detected by SIFT prior to application of these thresholds and the algorithm takes approximately 
1 second to run in all cases. The green thresholds chosen for this setup reflect the dimmer 
lighting conditions, while the small feature size threshold reflects the expected size of the laser 
pattern dots on the surface. 
 

 

 
Figure 10.​ SIFT features detected using g=0, s=4 (top left), g=0, s=7 (top right), g=100, s=4 
(bottom left), and g=100, s=7 (bottom right), where g is measured in bits and s is measured in 
pixels. 

 



 

Maximally stable extremal regions (MSER), which identified blobs in the image, also provided 
relatively accurate results in some situations, but was less effective in others. Figure 11 shows 
MSER features that were detected in the same testing setting as above using different 
thresholds to remove features that were too close to each other (and thus potentially on the 
same laser dot). The features were also filtered by their roundness to only keep those that were 
relatively round, since it could be reasonably assumed that the laser dots would be 
approximately circular when projected onto the testing surfaces. The algorithm takes 
approximately 0.7-0.8 seconds to run, with larger distance thresholds corresponding to shorter 
running times. 
 

 
Figure 11.​ MSER features detected using m=10 (left), m=20 (center), and m=30 (right), where 
m is measured in pixels. 44, 43, and 32 features were found with each threshold respectively. 
 
Table 1 below presents the number of correctly identified dots, the number of false positives 
(algorithm found dot where there was no dot) and the number of false negatives (algorithm did 
not find dot where there was one) for SIFT on the images above, while Table 2 presents these 
data for MSER. We can see that one major benefit of MSER was that there were no false 
positives, though the number of dots detected correctly was sometimes slightly less than the 
total number of features found if the threshold used for minimum distance between dots was not 
high enough. Because of the absence of false positives, we used MSER in our 3D 
reconstruction code to minimize outliers. However, SIFT detected a much larger proportion of 
the dots. The sum of the number of correct dots and false negative dots were different between 
the evaluations of SIFT and MSER because MSER detects blobs and frequently groups multiple 
dots into a single detected blob. However, it is primarily the ratios between these values that is 
important to compare. 
 

# instances of: g = 0 
s = 4 

g = 0 
s = 7 

g = 100 
s = 4 

g = 100 
s = 7 

Correct 99 96 81 87 

False Positive 1 4 0 3 

False Negative 121 124 139 133 

 

 



 

Table 1. ​Performance of SIFT on image of ham with g=0 and s=4, g=0 and s=7, g=100 and s=4, 
and g=100 and s=7, where g is measured in bits and s is measured in pixels. 
 

# instances of: m=10 m=20 m=30 

Correct 34 34 29 

False Positive 0 0 0 

False Negative 186 186 191 

 
Table 2. ​Performance of MSER on image of ham with m=10, m=20, and m=30, where m is 
measured in pixels. 
 
While the MSER results did not need to be refined with thresholds as variable as those that 
were used in SIFT, one can see that significantly fewer features were detected using MSER. 
Since the laser pattern is already relatively sparse, it would be more difficult to generate an 
accurate 3D reconstruction without detecting as many dots as possible. We also found that 
adjusting the aperture of the camera for different images affected the clarity and brightness of 
some of the dots, which would then affect the accuracy of the resulting detected features. 
 
MSER did not detect many of the laser pattern dots in this particular setup, likely because of the 
dim lighting conditions and because some of the dots appear fainter and less defined on the 
surface. However, as can be seen in the results above, MSER detected enough features in 
some situations to allow for relatively accurate 3D reconstruction of simple objects. MSER also 
tended to perform better with larger dots, so the aperture could be adjusted to increase dot 
sizes in the image to improve the performance of MSER. In general, SIFT detected a larger 
number of features in more complex situations and on more realistic surfaces, especially when 
lighting was dim or laser points were not as clearly visible on the surface that was being imaged. 
In addition, the larger variety of parameters returned by SIFT could be used for more precise 
feature matching between images of the same scene. However, the size and greenness 
thresholds often had to be adjusted to achieve a desired accuracy in different situations, which 
would be impractical for real-time use when environmental conditions are often unknown and 
constantly changing. The current running time of the algorithm would also be too slow for a 
real-time application (although MSER is also too slow for real-time). If these settings could be 
further refined and optimized, SIFT would be a better choice for feature detection for real-life 
applications. 
 
Management Summary 
Both Elli and Shohini worked on assembly of the mechanical setup for the camera and laser, 
and worked on collecting images for camera calibration and training images for calibration of the 
camera-laser system. Elli focused on dot detection using SIFT, and Shohini focused on dot 
detection using MSER. Shohini was primarily responsible for static 3D reconstruction on the 

 



 

detected point clouds, and Elli looked into dynamic 3D reconstruction using a possible variety of 
open-source SLAM packages. However, this dynamic 3D reconstruction was not implemented 
due to the difficulties encountered with obtaining an accurate static reconstruction. 
 
Initially, our minimum goal was to be able to produce static 3D reconstructions of a variety of 
objects with at least millimeter accuracy, reflecting the small scale of the structures that might be 
encountered during an endoscopy. We also hoped to implement a simple SLAM or point cloud 
matching algorithm to allow for real-time 3D reconstruction of simple objects, such as cylinders, 
inclines, or rectangular prisms as our expected deliverable. If all of this was completed, we 
hoped to be able to use a similar algorithm for real-time 3D reconstruction of complex objects 
and more realistic situations as a maximum deliverable. Due to some difficulties encountered 
with identifying correspondences between laser point dots in the images, however, we were 
only able to produce static 3D reconstructions that were not quite within the millimeter accuracy 
that we hoped to achieve. Overall, the generated point clouds could be fitted to a surfaces that 
were very similar to the objects we were trying to image, but they almost always contained 
outliers that did not reflect the actual surface structure. Without the desired accuracy in these 
static 3D reconstructions, we were unable to move on to implementing an algorithm for real-time 
3D reconstruction. This issue is discussed earlier and the best resolution  
 
While we looked into several open-source SLAM packages and also researched writing our own 
using an iterative closest point (ICP) process, we also had some difficulties with finding an 
algorithm that would work with our data. Many SLAM algorithms assume that at least some 
information is known about the environment, such as prominent landmark locations or depth 
information obtained from a stereo camera setup, but we were only able to produce static 
reconstructions as 3D point clouds from our laser pattern images. Therefore, a successful 
implementation of SLAM with our data would rely even more heavily on accurate point and 
feature matching between successive images of a scene. 
 
In order to continue developing software that can be used for live reconstruction during 
minimally invasive surgery, a more efficient dot detection algorithm is needed. This would 
involve a variety of factors, most notably figuring out how to quickly determine appropriate 
thresholds for size and green amount for different environmental conditions in order to refine the 
results obtained from any feature detector used. In addition, the range of workable distances 
would need to be increased in order to account for more complex topographies, which would 
require an algorithmic or automated method for adjusting the aperture on the camera in order to 
bring the laser point dots into focus and appear around the same size.  
 
Additional hardware adjustments could also be made to improve the reconstruction process. A 
huge barrier to achieving the desired accuracy with our particular setup was how sparse the 
dots produced by the laser fiber were. Combined with inconsistent dot detection from SIFT or 
MSER, it was difficult to obtain a smooth and reliable static 3D reconstruction. A denser laser 
pattern, like that produced by the Microsoft Kinect, would improve our reconstruction results 
because it would allow for matching of windows of regions of the laser pattern rather than 

 



 

matching of individual dots between images. An infrared laser pattern could also be used 
instead of green light in order to get RGB images of the environment and infrared images of the 
pattern at the same time, without dealing with lighting that can cause glare or inaccurate dot 
detection. 
 
After all of this is accomplished, improvements could be made to the space and time 
complexities of the code, and it could be combined with a SLAM or point cloud matching 
package for real-time 3D reconstruction. A denser reconstruction (based on a window-matching 
approach or a significantly denser dot pattern) would allow for better integration with SLAM. In 
addition, successive images generated by SLAM could be used to further refine the initial depth 
map, eliminate outliers, resolve discontinuities, and overall generate a denser reconstruction of 
the environment. Finally, the software could be adapted to work with the laser fiber inserted 
down the working channel of an endoscope and tested in a more realistic situation. 
 
From this project, we learned that determining a reliable camera-laser calibration with the given 
setup is more difficult and crucial than expected. We had to assume many things for our 
experiments that may not be true during a real-life application, including that the focus of the 
camera would not change and that the imaged scene would be contained within a specific 
distance range. Even with these assumptions, our results for feature detection were neither as 
accurate nor as thorough as we would have liked, and as a result we were unable to move 
ahead with some of our planned deliverables. However, from our research and discussions with 
our mentors, we believe that it will be possible to produce real-time 3D reconstructions using 
SLAM once a static reconstruction with the desired accuracy can be obtained. With 
improvements to efficiency and accuracy of this process, it can hopefully be adapted to work 
with a variety of camera-laser setups in more realistic situations and applications. 
 
Technical Appendices 
All code developed for this project can be found in the BitBucket repository at 
https://bitbucket.org/etian1/3dkinect​. 
 

 

https://bitbucket.org/etian1/3dkinect

