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Background 
Video-guided minimally invasive surgery can reduce adverse effects for patients through the use of an 
endoscope that is inserted through a small incision instead of open surgery. However, endoscopy is 
limited in that the surgeon only sees a geometrically distorted 2D image of the surgical site. It would be 
desirable for the surgeon to have more accurate information on the surface topology of the surgical site 
from a 3D imaging system as this can guide diagnosis and surgery. For example, a collapsed airway that 
can be difficult to see in a 2D image could be clearly visualized using a 3D reconstruction of the space. 
Stereo reconstruction has been used to do reconstruction in endoscopy, but these systems may not 
perform as well on human tissue with few features. A structured light approach to 3D reconstruction can 
address this issue, as the projected light can create feature points on tissue where there were previously no 
distinguishable features. 
 
By using a small camera and laser fiber that projects a pseudo-random pattern of green dots, we hope to 
develop software that will allow for precise and accurate 3D reconstruction of a variety of objects. Our 
goal is to make this software portable and flexible, so that it can eventually be adapted for real-time use 
during surgery with the laser fiber inserted down the working channel of a flexible endoscope. 
 
Technical Approach 
Mechanical Setup 
The camera used was the Chameleon 1.3 MP Color USB 2.0 manufactured by Point Grey Research 
(model CMLN-13S2C-CS) with a Fujinon varifocal lens (model YV2.8x2.8SA-2) attached. The laser 
fiber, manufactured by 3Dintegrated, emits a 520nm light at 50mW with approximately 4 dots per square 
centimeter. A 3D printed frame was used to hold the camera and laser fiber so that their optical axes were 
parallel, as shown in Figure 1 below. The camera was 1.468 inches in diameter and the laser fiber was 0.1 
inches. The frame was printed in two symmetric halves and secured with screws, nuts, and washers. 
 

 
Figure 1. Mechanical setup of the camera and laser, using a 3D printed frame. 
 
The lens was adjusted so that the focal length was maximized and a wide-angle focus was achieved. 
These conditions were maintained as much as possible for all subsequent images in order to prevent the 
need for repeated camera calibration before each image acquisition session. The aperture of the lens was 
sometimes adjusted manually based on the environmental conditions in order to capture the laser pattern 
dots as clearly as possible. 
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Camera Calibration 
In order to calibrate the camera, 33 images of a checkerboard with known dimensions were taken. Then, a 
camera calibration toolbox (http://www.vision.caltech.edu/bouguetj/calib_doc/) was used to determine 
intrinsic camera parameters, including skew, focal length, principal point, and distortion coefficients. 
These parameters were used to un-distort all images collected. This calibration also indicated that 
distances measured from the front of the camera holder to an object were 11mm shorter than the true 
distances of objects from the camera origin. Thus, 11mm was added to all distances measured for training 
images collected for camera-laser calibration (discussed next). 
 
Camera-Laser Calibration 
Once the camera alone was calibrated, a set of training images were collected of the pattern being 
projected onto a surface normal to the camera’s optical axis. Two data sets of training images were 
collected. The first set of training images was collected for planes ranging from 12-19cm from the front of 
the camera holder in 1mm increments (actually 131mm to 201mm); three sample calibration images are 
shown in Figure 2 below. 
 

 
Figure 2. Calibration images taken with the laser pattern projected onto a plane at 12cm, 15cm, and 19cm 
from the front of the camera holder (from left to right). 
 
The second set of training images was collected for planes ranging from 5-15cm from the front of the 
camera holder in 5mm increments (actually 61-161mm). For the first data set, the aperture was held 
constant for all images so images at shorter distances had larger dots. For the second data set the aperture 
was manually adjusted to get mid-sized dots in images. However, this adjustment between images was not 
consistent - the aperture was only adjusted when judged necessary while moving the camera from shorter 
to longer distances.  
 
Dots in the laser pattern for each of these images were found by using MSER and filtering the results by 
size and roundness. For each data set a single template training image was selected (161mm for first data 
set, 111mm for second data set) to be used as the template for the dots in laser pattern. This template was 
used to identify dots across images based on which dot in the template training image they corresponded 
with. For each non-template training image, dot correspondences between the non-template training 
image and the template training image were identified. Correspondences were identified by first 
considering the translation of the center of the laser pattern between the images (the center of the laser 
pattern was determined to be the centroid of the brightest points in the image). This translation was 
assumed to be similar for all dots in the pattern, so correspondences were identified by comparing 
windows around each of the dots for only those dots near the expected location (as determined by the base 
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translation). A correspondence was only used if both dots are found to be the best match for each other. 
Once these correspondences were established for a given non-template training image, information about 
the pixel coordinates of the center point of each dot in the non-template training image was stored. 
 
Based on these data points, a graph of y pixel coordinate vs x pixel coordinate for dot centers was created, 
with a line to represent each dot in the pattern. Each of the points along the line represented the pixel 
coordinates of the center of the dot in a training image at a certain distance. Thus, this graph essentially 
shows the possible locations of the center point of each dot in the pattern if the dot is projected onto 
something at a distance within the range of training image distances. Second degree polynomials were fit 
to the relationship between x and y pixel coordinates for each dot center. A plot of these polynomials was 
stored in a 2D lookup table (see Figure 4 right image). Second degree polynomials were also fit to the 
relationship between x pixel coordinate and real world distance for each dot in the laser pattern.  
 
3D Reconstruction 
Dots in testing images were again found by using MSER, then thresholding by size and eccentricity. The 
lookup table described above from camera-laser calibration was first used to find correspondences for 
each dot in the testing image. This was done for each dot separately, by finding all lines in the lookup 
table that are nearby the location of the center of the dot in the testing image. Each nearby line represents 
a dot identified in the template training image and is a potential match for the current dot in the testing 
image because there is some training image in which the center of the dot appears near where it is seen in 
the testing image. If there was exactly one possible match, the dot was used to compute a 3D point. If 
there were no matches or multiple possible matches the dot was not used. If a match was identified, the 
real world z coordinate of the 3D point was computed by using the equation relating x pixel coordinate of 
the center of the dot and distance (since the real world z coordinate is equal to the distance). Then, using 
the focal length and optical axis center found from camera calibration, the x and y coordinates of the 3D 
position of the point relative to the camera were computed.  The real world x coordinate was calculated as 
follows: 
 
xreal = ( xdot center, pixel - xprincipal point, pixel )  * d / fx 

 
Where d represents distance calculated as explained above, fx is the focal length along the x axis, xdot center, 

pixel is the x pixel coordinate of the center of the dot in the new image and  
xprincipal point, pixel is the x pixel coordinate of the principal point. The real world y coordinate was calculated 
equivalently. 
 
Finding Dots in Realistic Setting 
In order to evaluate how well laser pattern dots could be found in unknown, irregular, and more realistic 
situations, we simulated the surface imaged during an endoscopy with several pieces of ham. We then 
projected the laser pattern onto the surface without any other external lighting conditions in order to 
simulate conditions during an endoscopy when the endoscope light is turned off; this would be necessary 
because a bright backlight would wash out the laser pattern and make consistent dot detection nearly 
impossible. SIFT and MSER were used to find prominent features in the images. The time it took for each 
feature detector to run was determined, and the results were refined by keeping only features that were 
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above a certain threshold for green color or within a range of radii. The results were then evaluated by 
counting the number of detected features that overlapped closely with actual laser pattern dots (correct 
matches), the number of features that did not correspond to dots (false positives), and number of dots that 
were not detected (false negatives). 
 
Results/Discussion 
3D Reconstruction 
Dot correspondences between training images were used to determine how the (x,y) pixel coordinates of 
the center of each dot vary with distance. Figure 3 depicts an example of dot correspondences identified 
between training images, with lines drawn between matched dots. It is clear that the majority of dots, but 
not all dots in the laser pattern, were matched. The assumption that all dots experience similar translations 
as distance varies proved to be correct as there were no incorrect matches identified on manual inspection 
of many image pairs. One issue with this step is that all training images have dots identified based on dots 
in the template training image, so any dots not found by MSER in the template image are not used for 
computing depths. Thus if a dot was detected in a testing image that was not detected in the template 
image, this dot in the testing image may be incorrectly matched to a different dot in the template training 
image, which would produce incorrect matches and incorrect 3D points (contributes to outliers discussed 
later). 
 

 
Figure 3. Dot correspondences between 151mm and 161mm images from data set 1. 
These dot correspondences were then used to find how (x,y) pixel coordinates of the center point of each 
dot in the laser pattern varied with distance. This data gave us the 3D plot of this relationship depicted on 
the left in Figure 4 where each line in the plot represents a single dot in the laser pattern across images. The 
2D lookup table with lines representing the possible (x,y) pixel coordinates of the center of each dot in the 
laser pattern is depicted on the right in Figure 4. 
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Figure 4. Left - Plot of x pixel coordinate, y pixel coordinate, distance for training data in first data set. 
Right - Lookup table used to identify potential matches based on data set 1. Each line represents possible 
coordinates for a given dot in the laser pattern if the dot is projected onto something at a distance within 
the range of distances for training images. 
 
Using this lookup table and equations for each dot relating x pixel coordinate of dot center and distance as 
described earlier, we computed 3D point clouds based on data from various images. First, we sought to 
evaluate our system in a very simple way by doing a 3D reconstruction based on one of the training 
images. It can be seen in Figure 5 that the accuracy was generally good but that there were a few outliers. 
For example, the image at 180mm has 104 total 3D points generated, of which 101 were within 2mm of 
the true distance and 3 were farther from the true distance (97% of plotted 3D points were good matches). 
Figure 5 also depicts the same data with a surface fit to the points that is close to being a plane at 
z=180mm. These outliers may be surprising since this one of the training images, but they come from the 
fact that a polynomial was fit to the (x,y) pixel coordinates of each dot across images. So, if the dot in the 
training image at 180mm was relatively far from the polynomial fit to the (x,y) pixel coordinates across 
images for that dot, then it may be incorrectly matched to a different dot’s polynomial fit instead if that 
other dot can (at some different distance) appear in a similar location in the image.  

 
Figure 5. X and Z coordinates of 3D point cloud for training image at 180mm from data set 1 and surface 
fit to this point cloud in 3D coordinates. 
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We then sought to evaluate our system on objects with simple shapes. However, we found that our 
mechanical setup had likely shifted slightly since our training images were collected, as new images did 
not give good dot correspondences in the lookup table. Thus, we collected the second data set and on the 
same day collected images of simple objects on which to test our system (to minimize movement of 
mechanical setup between acquisition of training and testing images). However, there were significantly 
more outliers in this data than there were in the first data set, potentially because of the range of distances 
used (shorter distances produced lower quality images) and because a larger range of distances was used 
(so different dots are more likely to appear in the same place in the image at different distances). This 
difference between the data sets can be seen in Figure 6 below. For this second data set, only 78 out of 
112 of the 3D points (70%) were good matches for the training image at 161mm. By manual inspection, 
we determined that most of these outliers came from dots identified in the new image that were not 
present in the template training image that were incorrectly matched to dots identified in the template 
training image that appeared in a similar (x,y) pixel location at a very different distance.  

 
Figure 6. 3D point cloud for training image at 161mm from data set 2. 
 
We attempted to address the large number of incorrect matches (especially in the second training data set) 
by finding multiple potential matches for each dot in a new testing image then comparing windows 
around the dot in the testing image with the window around each of the potential match dots in a training 
image (training image for comparison was selected based on what the estimated distance would be if that 
dot was the correct match), and using the best match. However, we found that this did not improve our 
results, and in some cases produced even more outliers. Even setting a minimum threshold for the 
similarity between these windows for the best match found only served to remove more correct matches 
than incorrect matches. Thus, we decided to carry on using our original dot matching approach. 
 
We first tested our setup on a simple step of height 1.2cm using a thin rectangular prism, looking at the 
step straight on so the edge of the step was not visible from the camera. This setup was essentially 2 flat 
planes, with one plane at a distance of 141mm and another at a distance of 129mm. For this object, our 
results were generally good but there were still many incorrectly matched points. Out of the 98 points 
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plotted, 72 were good matches within 5mm of the actual distance (73%). Our results for the step and a 
picture of the setup are depicted in Figure 7. 
 

 
Figure 7. Real world x and z coordinates of step at distances 141mm and 129mm and image of setup. 
 
We also evaluated our system on a cylinder with a radius of approximately 80mm placed in front of a wall 
at a distance of 160mm from the camera. Figure 8 depicts the data for this cylindrical object and an image 
of the setup. Again, there are clear outliers but 44 of the 65 3D points (68%) are within 5mm of the 
estimated cylinder position. 
 

 
Figure 8. Real world x and y coordinates of cylinder at 80-160mm away and image of setup. 
 
Overall, for 3D reconstruction we found that although many of the generated 3D points were correct, our 
system’s performance was limited by dot detection and dot identification. Dot detection was an issue if a 
dot was found in a testing image but not in the template training image or not in a training image at the 
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same distance as that dot appears in the testing image. When this happen, an incorrect match to a different 
dot may be generated, which can give a distance estimate that is completely incorrect. This is the cause of 
most of the outliers seen in the results above. Better dot identification could have solved this problem as 
these incorrect matches would be avoided by correctly identifying dots in testing images. However, dot 
identification is difficult when dots are not detected consistently. One way to resolve this issue may be to 
improve dot detection, which may in turn improve identification of correspondences if every dot can be 
detected in every image. For this reason, we also evaluated different methods besides MSER for detecting 
dots in images (discussed below). However, the best solution to this issue of identifying dot 
correspondences may simply be to have a sufficiently dense dot pattern to allow for window matching 
rather than matching of specific dots. This is similar to what the Kinect does and allows for a more dense 
3D reconstruction because any window containing some laser pattern can be used to compute a depth for 
that window. However, this would require a significant change in hardware, so for the scope of this 
project we focused on software improvements to address this issue. 
 
Finding Dots in Realistic Setting 
The most effective of the feature detectors used to find the laser pattern dots was the scale-invariant 
feature transform (SIFT), which not only computed the locations of the features but their scale and 
orientation as well. Figure 9 shows an example testing setting, where ham was used to simulate the 
surfaces that may be imaged during endoscopy. 
 

 
Figure 9. A sample testing setting using ham to simulate realistic esophageal surfaces (left) and the laser 
pattern projected onto this surface (right). 
 
Figure 10 shows the SIFT features detected in this setting using a variety of green thresholds (g) and 
maximum feature size thresholds (s, in pixels). A total of 152 features are initially detected by SIFT prior 
to application of these thresholds and the algorithm takes approximately 1 second to run in all cases. The 
green thresholds chosen for this setup reflect the dimmer lighting conditions, while the small feature size 
threshold reflects the expected size of the laser pattern dots on the surface. 
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Figure 10. SIFT features detected using g=0, s=4 (top left), g=0, s=7 (top right), g=100, s=4 (bottom left), 
and g=100, s=7 (bottom right), where g is measured in bits and s is measured in pixels. 
 
Maximally stable extremal regions (MSER), which identified blobs in the image, also provided relatively 
accurate results in some situations, but was less effective in others. Figure 11 shows MSER features that 
were detected in the same testing setting as above using different thresholds to remove features that were 
too close to each other (and thus potentially on the same laser dot). The features were also filtered by their 
roundness to only keep those that were relatively round, since it could be reasonably assumed that the 
laser dots would be approximately circular when projected onto the testing surfaces. The algorithm takes 
approximately 0.7-0.8 seconds to run, with larger distance thresholds corresponding to shorter running 
times. 
 

 
Figure 11. MSER features detected using m=10 (left), m=20 (center), and m=30 (right), where m is 
measured in pixels. 44, 43, and 32 features were found with each threshold respectively. 
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Table 1 below presents the number of correctly identified dots, the number of false positives (algorithm 
found dot where there was no dot) and the number of false negatives (algorithm did not find dot where 
there was one) for SIFT on the images above, while Table 2 presents these data for MSER. We can see 
that one major benefit of MSER was that there were no false positives, though the number of dots 
detected correctly was sometimes slightly less than the total number of features found if the threshold 
used for minimum distance between dots was not high enough. Because of the absence of false positives, 
we used MSER in our 3D reconstruction code to minimize outliers. However, SIFT detected a much 
larger proportion of the dots. The sum of the number of correct dots and false negative dots were different 
between the evaluations of SIFT and MSER because MSER detects blobs and frequently groups multiple 
dots into a single detected blob. However, it is primarily the ratios between these values that is important 
to compare. 
 

# instances of: g = 0 
s = 4 

g = 0 
s = 7 

g = 100 
s = 4 

g = 100 
s = 7 

Correct 99 96 81 87 

False Positive 1 4 0 3 

False Negative 121 124 139 133 

 
Table 1. Performance of SIFT on image of ham with g=0 and s=4, g=0 and s=7, g=100 and s=4, and 
g=100 and s=7, where g is measured in bits and s is measured in pixels. 
 

# instances of: m=10 m=20 m=30 

Correct 34 34 29 

False Positive 0 0 0 

False Negative 186 186 191 

 
Table 2. Performance of MSER on image of ham with m=10, m=20, and m=30, where m is measured in 
pixels. 
 
While the MSER results did not need to be refined with thresholds as variable as those that were used in 
SIFT, one can see that significantly fewer features were detected using MSER. Since the laser pattern is 
already relatively sparse, it would be more difficult to generate an accurate 3D reconstruction without 
detecting as many dots as possible. We also found that adjusting the aperture of the camera for different 
images affected the clarity and brightness of some of the dots, which would then affect the accuracy of the 
resulting detected features. 
 
MSER did not detect many of the laser pattern dots in this particular setup, likely because of the dim 
lighting conditions and because some of the dots appear fainter and less defined on the surface. However, 
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as can be seen in the results above, MSER detected enough features in some situations to allow for 
relatively accurate 3D reconstruction of simple objects. MSER also tended to perform better with larger 
dots, so the aperture could be adjusted to increase dot sizes in the image to improve the performance of 
MSER. In general, SIFT detected a larger number of features in more complex situations and on more 
realistic surfaces, especially when lighting was dim or laser points were not as clearly visible on the 
surface that was being imaged. In addition, the larger variety of parameters returned by SIFT could be 
used for more precise feature matching between images of the same scene. However, the size and 
greenness thresholds often had to be adjusted to achieve a desired accuracy in different situations, which 
would be impractical for real-time use when environmental conditions are often unknown and constantly 
changing. The current running time of the algorithm would also be too slow for a real-time application 
(although MSER is also too slow for real-time). If these settings could be further refined and optimized, 
SIFT would be a better choice for feature detection for real-life applications. 
 
Management Summary 
Both Elli and Shohini worked on assembly of the mechanical setup for the camera and laser, and worked 
on collecting images for camera calibration and training images for calibration of the camera-laser 
system. Elli focused on dot detection using SIFT, and Shohini focused on dot detection using MSER. 
Shohini was primarily responsible for static 3D reconstruction on the detected point clouds, and Elli 
looked into dynamic 3D reconstruction using a possible variety of open-source SLAM packages. 
However, this dynamic 3D reconstruction was not implemented due to the difficulties encountered with 
obtaining an accurate static reconstruction. 
 
Initially, our minimum goal was to be able to produce static 3D reconstructions of a variety of objects 
with at least millimeter accuracy, reflecting the small scale of the structures that might be encountered 
during an endoscopy. We also hoped to implement a simple SLAM or point cloud matching algorithm to 
allow for real-time 3D reconstruction of simple objects, such as cylinders, inclines, or rectangular prisms 
as our expected deliverable. If all of this was completed, we hoped to be able to use a similar algorithm 
for real-time 3D reconstruction of complex objects and more realistic situations as a maximum 
deliverable. Due to some difficulties encountered with identifying correspondences between laser point 
dots in the images, however, we were only able to produce static 3D reconstructions that were not quite 
within the millimeter accuracy that we hoped to achieve. Overall, the generated point clouds could be 
fitted to a surfaces that were very similar to the objects we were trying to image, but they almost always 
contained outliers that did not reflect the actual surface structure. Without the desired accuracy in these 
static 3D reconstructions, we were unable to move on to implementing an algorithm for real-time 3D 
reconstruction. 
 
While we looked into several open-source SLAM packages and also researched writing our own using an 
iterative closest point (ICP) process, we also had some difficulties with finding an algorithm that would 
work with our data. Many SLAM algorithms assume that at least some information is known about the 
environment, such as prominent landmark locations or depth information obtained from a stereo camera 
setup, but we were only able to produce static reconstructions as 3D point clouds from our laser pattern 
images. Therefore, a successful implementation of SLAM with our data would rely even more heavily on 
accurate point and feature matching between successive images of a scene. 
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In order to continue developing software that can be used for live reconstruction during minimally 
invasive surgery, a more efficient dot detection algorithm is needed. This would involve a variety of 
factors, most notably figuring out how to quickly determine appropriate thresholds for size and green 
amount for different environmental conditions in order to refine the results obtained from any feature 
detector used. In addition, the range of workable distances would need to be increased in order to account 
for more complex topographies, which would require an algorithmic or automated method for adjusting 
the aperture on the camera in order to bring the laser point dots into focus and appear around the same 
size.  
 
Additional hardware adjustments could also be made to improve the reconstruction process. A huge 
barrier to achieving the desired accuracy with our particular setup was how sparse the dots produced by 
the laser fiber were. Combined with inconsistent dot detection from SIFT or MSER, it was difficult to 
obtain a smooth and reliable static 3D reconstruction. A denser laser pattern, like that produced by the 
Microsoft Kinect, would improve our reconstruction results because it would allow for matching of 
windows of regions of the laser pattern rather than matching of individual dots between images. An 
infrared laser pattern could also be used instead of green light in order to get RGB images of the 
environment and infrared images of the pattern at the same time, without dealing with lighting that can 
cause glare or inaccurate dot detection. 
 
After all of this is accomplished, improvements could be made to the space and time complexities of the 
code, and it could be combined with a SLAM or point cloud matching package for real-time 3D 
reconstruction. A denser reconstruction (based on a window-matching approach or a significantly denser 
dot pattern) would allow for better integration with SLAM. In addition, successive images generated by 
SLAM could be used to further refine the initial depth map, eliminate outliers, resolve discontinuities, and 
overall generate a denser reconstruction of the environment. Finally, the software could be adapted to 
work with the laser fiber inserted down the working channel of an endoscope and tested in a more 
realistic situation. 
 
From this project, we learned that determining a reliable camera-laser calibration with the given setup is 
more difficult and crucial than expected. We had to assume many things for our experiments that may not 
be true during a real-life application, including that the focus of the camera would not change and that the 
imaged scene would be contained within a specific distance range. Even with these assumptions, our 
results for feature detection were neither as accurate nor as thorough as we would have liked, and as a 
result we were unable to move ahead with some of our planned deliverables. However, from our research 
and discussions with our mentors, we believe that it will be possible to produce real-time 3D 
reconstructions using SLAM once a static reconstruction with the desired accuracy can be obtained. With 
improvements to efficiency and accuracy of this process, it can hopefully be adapted to work with a 
variety of camera-laser setups in more realistic situations and applications. 
 
Technical Appendices 
Appendix A: Code Repository Link 
All code developed for this project, documentation, and images collected can be found in the BitBucket 
repository at https://bitbucket.org/etian1/3dkinect.  
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Appendix B: Description of Files 
training.m 
This script uses training images at known distances from either the new or old data set to find 
correspondences between dots in each training image with dots in the template training image. The 
locations of these dots that have been matched to dots in the template training image are stored in the 
matrix trainingDots. Each row in training dots represents an image/distance, each column represents a 
specific dot found within the template image, and each entry contains the (x,y) coordinates of the relevant 
dot if a correspondence was identified. 
 
buildLookupTable.m 
This script populates the matrices lookupTable and xDistLines based on the results from the script 
training.m about the locations of each dot in the laser pattern in each image (stored in trainingDots). The 
matrix lookupTable has rows representing x pixel coordinate, columns representing y pixel coordinate, 
and each entry is a list of dot indices for dots that are centered at that (x,y) pixel coordinate at some 
distance. The matrix xDistLines stores the coefficients of the polynomial fit to the relationship between x 
pixel coordinate and distance. 
 
makeDepthMap.m 
This script uses data from training.m and buildLookupTable.m about the relationship between (x,y) pixel 
coordinates and distance for each dot in the laser pattern from the training data to produce a 3D point 
cloud based on a new image. Dots in the new input image are matched to dots in the template training 
image based on their location within the image (based on which dots could potentially be in that location). 
This is done using the lookupTable matrix produced by buildLookupTable.m. Distance is calculated 
based on xDistLines produced by buildLookupTable.m. 
 
getDots.m 
This function takes in an RGB image, and T/F parameters. When findCenter is true the function will make 
the first center point that of the dot at the center of the laser pattern. When eliminateDup is true, no two 
dots that center points within minInterDotDist of each other will be included in the returned list. When 
returnPixelLists is true the function will also return a list of the pixel coordinates for each pixel within the 
dot for each dot found. 
 
getDotsSIFT.m 
This function takes in an image file and calculates SIFT keypoints and descriptors using the vl_sift 
package (http://www.vlfeat.org/overview/sift.html). The results are thresholded with a peak selection 
threshold PeakThresh, non-edge selection threshold EdgeThresh, a maximum pixel radius maxRad, and 
green amount greenThresh. The number of keypoints found and the time taken for the code to run are 
outputted to the command line, along with additional information about the SIFT process. 
 
matchDots.m 
This function takes in two images and the coordinates of the center points of the dots in the laser pattern 
in each of these images. The dots may be in different orders. 
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This function returns a list of matches between dots in the test and template images. Each row of 
tmplMatches represents a match with the dot stored in the same row number in centersTmpl. The value 
stored within a given row in tmplMatches represents the index of the dot in the test image (within 
centersTest) that was matched to the dot in the template image.  
 
windowComp.m 
This script computes and returns the "similarity" in terms of the specified metric (ncc for normalized 
cross correlation or ssd for sum of squared differences) between a window in image1 centered at center1 
with radius windowRad and a window in image2 centered at center2 with radius windowRad. If the 
window does not fit within either image, a value of 0 will be returned as the windows can't be compared. 
 
correctDistortion.m 
This function corrects the lens distortion in a series of images contained in a folder with path imgsPath 
and calibration parameters contained in the file calibFile. Undistorted images are outputted to the folder 
with path outPath. 
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