Applications in Hand-Focused Rehabilitation Therapy

TEAM #15 MEMBERS: JAKE CARDUCCI, KEVIN OLDS (MENTOR)

Project Summary

- Hand fits in adjustable brace, secures to base
- Finger fits in silicon cup(s), force detected at base
- Force signals sent to computer and processed into usable information
- Increase digit count from two to five
 - $8 \rightarrow 20$ signal channels
- Properly calibrate force sensors with high sensitivity
- Modify mechanisms for easier component attachment and removal (brace, retention cups, etc.)

Paper Selection

- Clinical background (1 paper)
 - Jing Xu et al. Recovery of hand function after stroke: separable systems for finger strength and control
- Practical application (3 papers)
 - Dovat, L. et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke
 - Jean-Claude Metzger et al. Assessment-driven selection and adaptation of exercise difficulty in robotassisted therapy: a pilot study with a hand rehabilitation robot
 - N.S.K. Ho et al. An EMG-driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects (if time permits)

- Objective:
 - Isolate aspects of hand function (strength/individuation)
- Key Results:
 - Finger evaluation device
 - Involuntary passive finger movement correlates with active finger force
 - Strength/Individuation
 - Max improvement in first 3 months
 - Strong correlation up to 60% non-paretic strength

- Background
 - 2 components of hand motor function
 - Strength
 - Independent finger control
 - Existing metrics
 - Fugl-Meyer Assessment (Upper Extremity) <u>http://www.gu.se/digitalAssets/1328/1328</u> <u>946_fma-ue-english.pdf</u>
 - Action Reach Arm Test

FMA-UE

A. UPPER EXTREMITY	/36
B. WRIST	/10
C. HAND	/14
D. COORDINATION / SPEED	/ 6
TOTAL A-D (motor function)	/66
H. SENSATION	/12
J. PASSIVE JOINT MOTION	/24
J. JOINT PAIN	/24

Pati

- Methodology lacksquare
 - Sampling •
 - 3 medical centers (JH, Columbia, Zurich) •
 - Inclusion criteria .
 - 14 healthy age-matched control patients •
 - Duration ٠
 - 5 visits over 54 weeks •
 - Strength 2 x 2 sec / digit •
 - Individuation 4 x 4 levels x 0.5 sec / digit ٠

				Initial	-
	Age at		Paretic	impairment	Initial
atient	stroke	Gender	Side	(FMA)	MoCA
1	57	M	R	48	27
2	24	M	L	35	23
3	67	F	R	16	23
4	74	F	R	39	17
5	61	F	L	48	26
6	59	F	R	60	28
7	57	M	R	54	27
8	66	M	L	65	25
9	42	F	R	5	18
10	65	M	L	30	25
11	66	F	L	60	19
12	51	M	L	34	25
13	63	F	L	57	26
14	55	M	L	0	26
15	56	M	L	38	25
16	56	M	L	64	24
17	64	F	R	20	16
18	60	F	R	55	21
19	64	M	L	63	25
20	25	F	L	42	29
21	30	F	ī.	47	20
22	46	Ň	ĩ	0	27
23	53	F	ĩ	4	29
24	66	M	ĩ	59	24
25	71	M	ĩ	4	26
26	52	M	ĩ	53	24
27	46	M	R	4	21

			<u> </u>		
-					
				Initial	
	Age at		Paretic	impairment	Initial
Patient	stroke	Gender	Side	(FMA)	MoCA
28	46	M	L	49	30
29	71	M	L	6	24
30	47	M	R	57	10
31	45	M	L	8	27
32	55	F	L	19	25
33	68	F	L	61	NaN
34	65	M	L	32	28
35	51	F	L	63	26
36	42	M	R	54	25
37	58	M	L	4	24
38	41	F	L	4	23
39	35	M	L	4	29
40	68	M	L	52	27
41	76	M	L	53	18
42	86	M	L	54	20
43	48	M	L	16	25
44	74	M	R	5	25
45	80	F	R	9	24
46	64	F	L	58	19
47	22	M	R	63	27
48	88	F	R	55	28
49	22	M	R	63	27
50	87	F	R	50	28
51	84	M	R	30	26
52	53	M	R	30	29
53	54	M	L	59	21
54	58	M	R	61	23

- Methodology
 - Human Interface
 - Keyboard glove
 - Monitor display
 - Metrics
 - MVF (Max strength averaged across all digits)
 - Individuation (Averaged regression b/t active, passive fingers)

2 trials per digit

4 trials per level 4 levels (20% — 80%) per digit

- Highlights
 - Two independent metrics of motor control
 - Representative sampling
- Limitations
 - Averaging metrics overgeneralizes finger contributions
 - Single direction transducers
- Relevance
 - Evaluation device
 - Appropriate test and interface

Paper Selection

- Clinical background (1 paper)
 - Jing Xu et al. Recovery of hand function after stroke: separable systems for finger strength and control
- Practical application (3 papers)
 - Dovat, L. et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke
 - Jean-Claude Metzger et al. Assessment-driven selection and adaptation of exercise difficulty in robotassisted therapy: a pilot study with a hand rehabilitation robot
 - N.S.K. Ho et al. An EMG-driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects

- Objective:
 - Train fingers with elements of passive and active haptics
- Key Results:
 - Adjustable cable-driven training system
 - Individual control for each digit through clutch subsystem
 - Relatively large range of motion

- Background
 - Active robotics
 - Bulky
 - Limited range
 - Nonactuated devices
 - No force control
 - Continuous passive motion (CPM)
 - No active movements

			REVIEW OF	TABLE I DEVICES FOR HAND AND FINGER REHABILITATIO	N		
Γ			Interface	Movement	DOF	Output Force, Torque	Workspac
Ĩ	ated		Thera-Band Hand Exerciser [6]	hand opening/closing (fingers move together)	10	45N	×
	actu		Digi-Flex [6]	extension/flexion of the five fingers (fingers move individually)	50	40N / finger	30-60°
L	Nor		Power-Web [6]	any movements of the five fingers (fingers move individually)	000	*	×
ſ	W		Hand 8091 by VQ OrthoCare [13]	extension/flexion of the five fingers (fingers move together)	1⊕	8	0–90°
l	5		Amadeo System by Tyromotion [14]	extension/flexion of the five fingers (fingers move individually)	5⊕	8	0-70°
Ī		1	Hand Robot Alpha-Prototype II [15]	extension/flexion of the five fingers (fingers move together)	1•	120N	-45-90°
		modu	ARMin forearm extension [16]	forearm pronation/supination wrist extension/flexion	2•	4Nm 3Nm	±70° -30-75°
	Add hand	Gentle/G Grasp Robot [17]	extension/flexion of four fingers (2 DOF) (fingers move together) thumh extension(flexion (1 DOF)	3• 30	18N	0-70°	
	levices	licated	Rehabilitation Haptic Knob [18]–[20]	forearm pronation/supination extension/flexion of five fingers (fingers move together)	2•	12N 1.5Nm 50N	±180° 0-60°
	ve robotic c	Robot ded to hand fu	HWARD [21]	extension/flexion of four fingers (fingers move together) thumb extension/flexion wrist extension/flexion	3•	15N	25-90° 0-60° 0-20°
	Acti	er	Rutgers Master II [22], [23]	extension/flexion of four fingers, without little finger (fingers move individually)	4•	16.4N / finger	0-40°
		skele I fing	CyberGrasp, Immersion [24]	extension/flexion of five fingers (fingers move individually)	5•	12N / finger	-45-85°
		Glove and exc for individua	Gifu Haptic Interface [25], [26]	extension/flexion of each finger (2 DOF) abduction/adduction of each finger (1 DOF) thumb extension/flexion (3 DOF) thumb abduction/adduction (1 DOF) forearm pronation/supination	18•	5N 5N 5N 5N 3Nm	0-90° 0-45° 0-80° 0-60° ±90°
		ot L-2 ers	SPIDAR [27]. [28]	wrist extension/flexion extension/flexion of two fingers	6•	1.3Nm 4N / finger	±80° -45-90°
		for fing	HIFE [29]	extension/flexion of one finger	2•	10N / finger	-45-90°

i LØJ
 o non actuated DOF ⊕ actuated and passive DOF • actuated and active DOF
 * not available

- Biomechanical study
 - Sampling
 - 8 healthy participants
 - 5 chronic stroke patients (RH)
 - Measurements
 - Finger orientation
 - Finger amplitude
 - States: open and close

- Construction
 - Multi-pulley system (POM)
 - Cables (steel)
 - Linear workspace $\Delta a = 8 \text{ cm}$
 - Open palm range
 - Force sensors
 - 1000 Hz sampling rate
 - Orthogonally anchored to cable
 - heta: Angular deflection of cable
 - \hat{F} : sensed force; F: applied finger force; $\rho = \frac{F}{F}$
 - Sensor voltage $V = c\hat{F} + V_0 = cF\frac{l}{L}\sin\theta + V_0$
 - $V \in [-15, 15] N$ If $c = 0.2 \frac{V}{N}$ and $V_0 = 1.9 V$

linear motion of each finger	8.5	cm
flexion of each finger	0 - 70	deg
maximal opening (between	18.5	cm
thumb and opposing fingers)		
minimal opening (between	1.5	cm
thumb and opposing fingers)		
maximal/minimal force	± 75	N
generated at the ouput	± 15	N for each finger
force measuring range	± 15	N for each finger
force sensitivity	0.2	N
control frequency	100	Hz
sensor sampling frequency	1000	Hz
weight (with motor	5	kg
and control system)		
external dimensions	60 x 30 x 30	cm^3

TABLE II

- Construction
 - Cogwheels (steel)
 - Clutch subsystem
 - Active mode (4) driving gear
 - Fixed mode (2) blocking pin
 - Free mode (1,3) disengaged gear and pin
 - Actuation/control subsystem
 - 150 W motor; 500 counts/rev encoder
 - 100 Hz sampling from encoder; 100 Hz commands to motor
 - Able to record 2-7 Hz human motions
 - Safety subsystem
 - Mechanical stops
 - Emergency button

- Advancements
 - Wide actuation workspace
 - Hybrid modes
- Limitations
 - Little detail about material selection
 - Human testing (detail and scale)
- Relevance
 - Passive actuation
 - Force transducing individual digits
 - Human signal sampling rate

Paper Selection

- Clinical background (1 paper)
 - Jing Xu et al. Recovery of hand function after stroke: separable systems for finger strength and control
- Practical application (3 papers)
 - Dovat, L. et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke
 - Jean-Claude Metzger et al. Assessment-driven selection and adaptation of exercise difficulty in robotassisted therapy: a pilot study with a hand rehabilitation robot
 - N.S.K. Ho et al. An EMG-driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects

- Objective:
 - Adaptive stroke therapy
- Key Results:
 - 2 DOF passive haptic device
 - Control over exercise performance with difficulty adjustment
 - Sensorimotor impairment characterization

- Background
 - Relationship between engagement and difficulty
 - 2DOF range of motion
 - Pronation/supnation
 - Grip aperature

Performance measure	ReHa	pticKnob
DOF	translation	rotation
Range of motion	30-200 mm	±159°
Position resolution (encoder)	0.0024 mm/count	0.009°/count
Velocity resolution (encoder) @ 1kHz	2.45 mm/s	9°/count
Maximum velocity	520 mm/s	4.8 rotations/s
Maximum acceleration	$13.25 \ m/s^2$	124 rotations/s ²
Static friction	6 N	<0.4 Nm
Maximum actuation force at end-effector (continuous)	1181 N (88 N)	12.18 Nm (0.98 Nm)
Force/Torque meas. in x,y direction (Resolution)	80 N (0.02 N)	4 Nm (0.0005 Nm)
Force/Torque meas. in z direction (Resolution)	240 N (0.04 N)	4 Nm (0.0005 Nm)
Closed-loop (PID) position bandwidth	6.6 Hz	7.6 Hz
Control frequency	1kHz	

$$ROM_{\varphi} = \varphi_{p,max} - \varphi_{s,max}$$
$$ROM_{x} = x_{max} - x_{min}$$

- Methodology
 - Sampling
 - Robotic Assessment
 - ROM
 - Proprioception
 - Haptic perception
 - Neurocognitive Exercises
 - Proprioception
 - Haptic perception
 - Sensorimotor memory
 - Sensorimotor coordination
 - Difficulty adjustment
 - Impairment Evaluation
 - Fugl-Meyer Assessment
 - Upper Extremity (A-D) & Hand/Wrist (B,C)

Table 1 I	Table 1 Patient demographics									
Patient	Age [years]	Gender	Handed -ness	Impaired hand	Post lesion [weeks]	Initial FMA-UE ¹	Initial FMA ¹ subscore (hand/ wrist)	Neurological disorder		
P1	85	F	R	L	2	57	20	Ischemic stroke in the right corona radiata and frontal centrum semiovale		
P2	67	Μ	R	L	2	55	20	Ischemic stroke in right thalamus		
P3	80	Μ	R	L	5	59	19	Ischemic stroke in right ponto-cerebellar region		
P4	70	Μ	R	R	6	52	16	Ischemic stroke in left parietal lobe		
P5	53	М	R	L	4	52	17	Ischemic stroke in right pre and post-central gyrus and right parietal lobe		
P6	82	М	R	L	3	61	20	Ischemic stroke in cortico-subcortical temporal- parietal lobe		
Mean	72.8	-	-	-	3.7	56.0	18.7	•		
(Std)	(12.0)	-	-	-	(1.5)	(3.7)	(1.8)	-		

¹ Fugl-Meyer Assessment (FMA) [31]. FMA scores for the upper extremity (maximum score = 66) and hand/wrist (maximum score = 24) subsections are reported (lower scores indicate greater impairment).

$$L_i = \left\{ \begin{array}{ll} L_i + 1 & , if \ P_i \geq 70\% \\ L_i & , if \ P_i \in \]20, 70[\ \% \\ L_i - 1 & , if \ P_i \leq 20\% \end{array} \right.$$

Exercise description	Visual feedback	Initial adaptation	Exercise parameters	Performance	Er: Sans orimotor memory (Crin specture)		The error hand is a function	5 difficulty leave	Decombon
E:: Proprioception (Passive grip aperture identification) The robot closes the hand form an initial grauping aperture & pdpustable in the range [100, 122] mm based on hand size) to one out ON larget apertures. The N larget apertures differ by δ_{k} and are contend around 4-22 mm.	N sicks indicate the N grasping aperture. Mentification feedback a green check mark (correct and) or a ref does notes: (larget) sick.	The difference between larget apentures is a function of the assessed distance DL : $\delta_{\rm ff} = {\rm (distance } DL$) The assessed distance DL (assessment 4.0) is finited to the range [2, 10] mm	5 difficulty levels: Number of larget apertures N = (2, 4, 5, 5, 5) Target aperture difference DL) 5 difficulty levels: 5 difficulty levels:	metric Percentage of correct identification trials	ci. senset/motor memory (uring aprillife) Teach: the hold closes the hand from a initial grapping apotture 4 (adustable in the range [102, 122] mm based on the hand size (b) a randomly selected target grapping apotture 4 in the range [70, 4/3] mm. Alfe 2 seconds the hand is moved Reproduce: the patient is asked to move to the Aught target grasping apotture and hold this position for 2 seconds (position logging). A trial is correct if the logged position line within the error band (b-b-22, dr-b-23). Advanged force field helps 30 Nitmis).	No strail feelfacts is provided during Advited any opposite of the strain strain of the strain was sorred. Addisonally, be strain of the strain was wrong). Solve or in mild the strain was wrong).	The assessed distance DL The assessed distance DL The assessed distance DL The assessed distance DL The assessment A) is limited to the range (2, 10) mm	s umaxif (MMH): Error band &= (12, 11, 1, 0, 9, 0, 8) × (distance DJ) Reduction of dumping support \$=(10, 75, 0, 5, 0, 5, 0) crecise grammeters: are (ealt, val2, val3, val4, val5) are (ealt, val2, val4, val4) 11 level 2 level 3 level 4 level	reversinge of correct reproduced trials
c): Propriodpluch (Passive procession)(antibin angle identification) The robot rotates the hand from an initial angle (40°), i.e. counterclookivies jour one ut of N larget angles. The N larget angles differ by 8 ₄ and are centered around 0°.	N transfers indicate the N target angles. A definition feedback a green edge (dering ans.) is deplayed around the correct (larget) angle.		S dimutely interests. Number of larget apertures N = $(3.4,5.8,7)$ Target aperture difference $\delta_{\phi} = (30,25,20,15,10)^*$	of correct identification trials	Es: Bensorimotor menory (Penosuphration ingié) Teach: the robot rotates the forearm from an initial angle (60°°, i.e. counter-clockwise) to a target angle ge nationity selected from a range R. After Angerorduce: the patient is ank of to rotate to the Jausht' target angle ingién (S. Artistis is correct if the lingged angle is within the enror hard (je & Z.c. ge	No visual feedback is provided during Jeach' and reproduce' phases. After tital completion a green check mark indicates if fre tital was correct.	Assessed rotational ROM ₆ (assessment Ar) defines the range R from which the target angle is randomly selected. Ref(ROM ₆) The range R is imited to [-60, 60] *	5 difficulty levels: Range from which φ_i is randomly selected rel (1,105,1,1,1,15,1,2) × ROM _e Reduction of damping support β =(1,0,5,0,25,0) Error band $\delta = (10,8,6,4,2)^{+}$	Percentage of correct reproduced trials
Es: Haya's perception (Stiffness licentification during grasping) The robot renders N sponges (spring-damper combinations) which have to be demitted based on their viscodsatic restitutions during squeezing. Rendered stiffness and duringing arxis vary by n percent from one to another and are centered around Kealaw-55 N/Ima.)	All N sponges are displayed and animated during squeezing, <i>loterification feedback</i> . the rendered sponge is colored green (correct ans.) or ind (arong aro.).	The relative difference between the visico- elassicities is a function of the assessed stiffness W? n = f(stiffness W?) The assessed stiffness W? (assessment.A) is fimited to the range [7.5, 45] %	Number of sponges Number of sponges N = (3,2,4,4,5,5,5,5,5) Relative difference between viscodasticities n = (21,9,1,8,1,7,1,6,1,5, 1,4,1,3,1,2,1,1) × (stiffness W/)	Percentage of correct identification trials	movement of the patient: B+ $\beta \times 50$ Nm(*/s). Ey: Sensorimotor coordination (htspfoally curd forearm rotation) The patient is asked to explore the rotational DOF in order to find a target angle φ , which is indicated taptically by marks of a small haplo valey(gap with amplitude A along the translational DOF. The robot has to be the file ($ \phi_{i},\phi_{i},\phi_{i},\phi_{i}\rangle$) for 28 acodes with amplitude A along the translational DOF. The robot has to be file ($ \phi_{i},\phi_{i},\phi_{i},\phi_{i}\rangle$) for 29 acodes	grey and the baged angle in yellow (or in red if the trial was wrong).	Assessed rotational ROM_{ϕ} (assessment A_{1}) defines the range R from which the target angle is randomly selected: $R = (ROM_{\phi})$ The range R is imited to [-60, 60].	10 difficulty levels: Applicable range of target angles: R = (1,1,02,104,108,108, 1,1,1,12,1,14,1,16,1,18) × ROMe Reduction of damping support B=(0,9,0,0,7,0,8, 0,5,0,4,0,3,0,1,0,0,3)	Number of successful triats within exercise time. 20 triats (or more) in 15 min corresponds.
E.: Haptic perception (Stiffness identification during pinching) The extent renders N springs (spring damper combinations) which have to be identified faund indust forger pinching. Rendered at different and damping pails vary by n percent from one to another and an conterent about Kneaker = 300 N/ m and Branker = 20 N(m/s).	All N springs an displayed and animated when compressed. Identification feedback: the rendered spring is colored green (correct and) or red (mong ant.).	The relative difference between the visco- elasticides is a function of the assessed stiffness $W!$ $\eta = f(stiffness W!)$ The assessed stiffness $W!$ (assessment A_0) is limited to the range (7.5, 45) %	5 difficulty levels: Number of springs N = (3,4,5,5,5) Relative difference between viscoelssicities $\eta = (2,1,3,1,6,1,4,1,2) \times (siffness$ W)	Percentage of correct identification trials	nd gange o. A my sond damping fail to carrier damping contact 8 another to patient's movement. A fail is successful when the target angle is faunt within 60 socials. Otherwise the rob (\$ ngove \$) patient passively to q.	angle 9. A green fame is drawn around the pictur when the traget angle has been found successfully. Only during task imiliarization the traget angle q is visualized by a black square.	LABORATORY F	0.75,0.6,0.450 (mm)	6 100%.
						Ĭ	Sensing + Ro		

- Advancements
 - System of adjusting difficulty
 - Plenty of detailed tests
- Limitations
 - High variability in performance
 - Small subject pool / limited control
- Relevance
 - Modifying force level difficulty
 - Mechanical adjustment of actuators

Paper Selection

- Clinical background (1 paper)
 - Jing Xu et al. Recovery of hand function after stroke: separable systems for finger strength and control
- Practical application (3 papers)
 - Dovat, L. et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke
 - Jean-Claude Metzger et al. Assessment-driven selection and adaptation of exercise difficulty in robotassisted therapy: a pilot study with a hand rehabilitation robot
 - N.S.K. Ho et al. An EMG-driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects

- Objective:
 - Develop active rehab exoskeleton driven by EMG
- Key Results:
 - Exoskeleton deliverable
 - Portable by design

- Background
 - Shoulder/elbow function recover faster than hand/wrist
 - Surface EMG from residual muscle
 - Exoskeleton design
 - 2DOF with linear actuator
 - 55 degree ROM for metacarpophalangeal (MCP) joint
 - 65 degree ROM for proximal interphalangeal (PIP) joint
 - 2 second zero-load close/open duration

- Methodology
 - Sampling
 - Eight chronic stroke patients
 - Presumably convenience sampling
 - Duration
 - Three to five sessions / week
 - Two 10-minute tasks
 - Move block 50 cm (horizontal)
 - Move block 20 cm (vertically)
 - Five min rest in between

TABLE I. DEMOGRAPHIC INFORMATION	TABLE I.	DEMOGRAPHIC INFORMATION
----------------------------------	----------	-------------------------

Subject	Gender	Age	Stroke Type	Affected Limb Side	Time after Stroke
Chronic					
1	F	28	Hemo.	Left	4 years
2	М	42	Hemo.	Right	14 years
3	F	63	Isch.	Left	4 years
4	М	67	Hemo.	Right	14 years
5	М	49	Isch.	Left	8 years
6	М	58	Isch.	Left	3 years
7	М	64	Isch.	Right	4 years
8	М	51	Isch.	Left	10 years

Female (F); Male (M); Hemorrhage (Hemo); and Ischemia (Isch).

- Methodology
 - 1 kHz EMG from two muscle e groups
 - Abductor pollicis brevis (closing)
 - Extensor digitorum (opening)
 - Mode select focuses action
 - Trigger at 20% max voluntary contraction EMG
 - Baseline and MVC EMG measured at beginning
 - Metrics
 - FMA-UE Motor function
 - ARAT Common daily tasks

- Advancements
 - 2 DOF lightweight exoskeleton
 - Improvement in hand function scores
- Limitations
 - Lack of portability verification
 - Limited patient group
- Relevance
 - Mobility & weight
 - Human signal sampling rate
 - Secure hand via Velcro

TABLE II. STATISTICAL SUMMARY

Assessments	Mea	Paired t-test	
(max. score)	Pre	Post	
FMA-S&E (42)	21.50±2.59	28.00±7.40	0.0426*
FMA-W&H (24)	7.83±5.11	11.83±5.85	0.0035*
ARAT (57)	21.833±8.66	29.67±9.14	0.0121*

* Mean value changes with statistical significance (P<0.05, paired t-test).

Recap and Going Forward

- Finger Eval. Device
 - Motor function metrics (MVF, Individuation)
- HandCARE
 - Passive actuation
 - Force transduction and sampling
- ReHapticKnob
 - Engagement through dynamic difficulty
 - Actuator adjustment
- EMG Exoskeleton
 - Mobility, hand securing, sampling

References

[1] Dovat, L., Lambercy, O., Gassert, R., Maeder, T., Milner, T., Leong, T. C., & Burdet, E. (2008). HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 582-591.

[2] Duke Medicine. (2014, October 20). [Supination/Pronation Comparison]. Retrieved April 16, 2017, from https://web.duke.edu/anatomy/mbs/Lab11_MBS/Lab12_preLab.html

[3] Ho, N. S. K., Tong, K. Y., Hu, X. L., Fung, K. L., Wei, X. J., Rong, W., & Susanto, E. A. (2011, June). An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on (pp. 1-5). IEEE.

[4] Hu, X. L., Tong, K. Y., Wei, X. J., Rong, W., Susanto, E. A., & Ho, S. K. (2013). The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. Journal of Electromyography and Kinesiology, 23(5), 1065-1074.

[5] Metzger, J. C., Lambercy, O., Califfi, A., Dinacci, D., Petrillo, C., Rossi, P., ... & Gassert, R. (2014). Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. Journal of neuroengineering and rehabilitation, 11(1), 154.

[6] Metzger, J. C., Lambercy, O., Chapuis, D., & Gassert, R. (2011, September). Design and characterization of the ReHapticKnob, a robot for assessment and therapy of hand function. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on (pp. 3074-3080). IEEE.

[7] Xu, J., Ejaz, N., Hertler, B., Branscheidt, M., Widmer, M., Faria, A. V., ... & Kitago, T. (2016). Recovery of hand function after stroke: separable systems for finger strength and control. bioRxiv, 079269.

