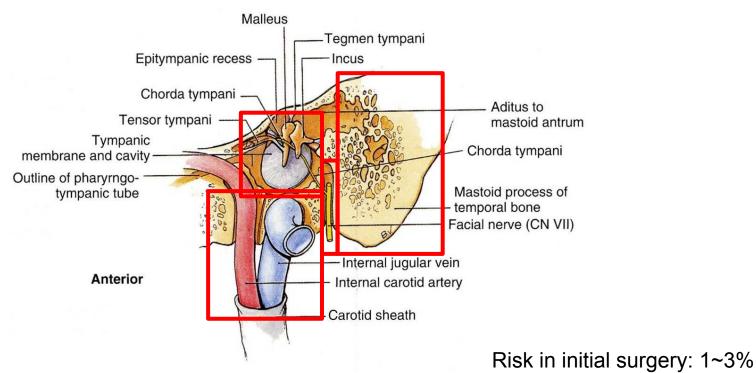
# Robotic Bone Drilling Assessment

Shain Bannowsky, Yifan Zhang

Mentors: Yunus Sevimli, Paul Wilkening, Dr. Russell Taylor, Dr. Matt Stewart

## Background and Motivation




(Video from Department of Otolaryngology and Neurosurgery at George Washington University Medical Center)

**Mastoidectomy:** Surgery that involves the removal of a portion of the mastoid bone

- To remove diseased mastoid air cells resulting from ear infections
- To approach other structures in the ear (e.g. insertion of cochlear implants)

## Background and Motivation



Risk in revision surgery: 4~10%

## Background and Motivation

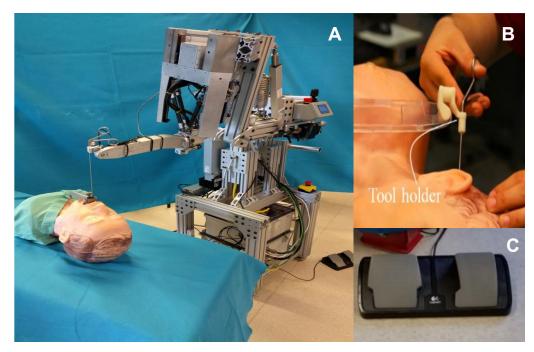
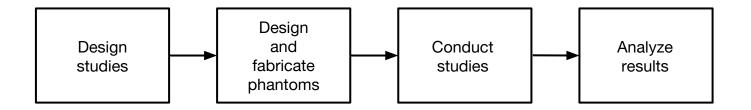



Image (a) from Joseph Peine's presentation: Integration of Galen for Otology Applications
Images (b)(c) from Kevin Old's dissertation: Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery


- A) Galen Robot
- B) Cooperative control of tools
- C) Foot pedal to modulate control gains

#### Goal

Design and conduct experiments to evaluate the <u>performance</u> of the Galen System in the bone drilling procedure

- Safety
- Effectiveness
- Speed

## Technical Approach



Three groups of subjects will be tested:

- Laymen (no prior surgical experience)
- Surgeons in training
- Senior surgeons

Three levels of robotic assistance per group:

- No assistance
- Hand tremor elimination
- Hand tremor elimination and virtual fixtures

#### Deliverables

- Minimum Deliverable
  - Safety Assessment
- Expected Deliverable
  - Effectiveness Assessment
- Maximum Deliverable
  - Speed Assessment

All assessments will be written reports.

### Dependencies

- Access to 3D printer to build phantoms
- Access to Galen System/surgical drills/mock OR + robot software
- Recruitment of volunteers for study (laymen, surgeons in training, and senior surgeons)
- Scheduling of mock operations
- Computer vision packages

# **Project Timeline**

|                                                       | February | March | April | May |
|-------------------------------------------------------|----------|-------|-------|-----|
| Preparation                                           |          |       |       |     |
| Understand the project goal                           |          |       |       |     |
| Preliminary project plan                              |          |       |       |     |
| Further discuss project plan with mentors             |          |       |       |     |
| Learn to use Computer Vision System Toolbox           |          |       |       |     |
| Recruit volunteers                                    |          |       |       |     |
| Minimum Deliverables (Safety Assesment)               |          |       |       |     |
| Design experiment                                     |          |       |       |     |
| Design phantom                                        |          |       |       |     |
| Conduct experiment                                    |          |       |       |     |
| Analyze results                                       |          |       |       |     |
| <b>Expected Deliverables (Effectiveness Assesment</b> | )        |       |       |     |
| Design experiment                                     |          |       |       |     |
| Design phantom                                        |          |       |       |     |
| Conduct experiment                                    |          |       |       |     |
| Analyze results                                       |          |       |       |     |
| Maximum Deliverables (Surgical Time Assesmer          | nt)      |       |       |     |
| Design experiment                                     |          |       |       |     |
| Design phantom                                        |          |       |       |     |
| Conduct experiment                                    |          |       |       |     |
| Analyze results                                       |          |       |       |     |

# Management Plan

| Shain                         | Yifan           |  |  |  |
|-------------------------------|-----------------|--|--|--|
| Design studies                |                 |  |  |  |
| Monitor studies               |                 |  |  |  |
| Design and fabricate phantoms | Analyze results |  |  |  |
| Weekly meetings               |                 |  |  |  |

## Reading List

Dillon, Neal P., Ramya Balachandran, J. Michael Fitzpatrick, Michael A. Siebold, Robert F. Labadie, George B. Wanna, Thomas J. Withrow, and Robert J. Webster. "A Compact, Bone-Attached Robot for Mastoidectomy." *Journal of Medical Devices* 9.3 (2015): 031003. Web.

Hofer, M., R. Grunert, E. Dittrich, E. Müller, M. Mockel, K. Koulechov, M. Strauss, W. Korb, T. Schulz, A. Dietz, T. Luth, and G.Strauss. "Surgery on the lateral skull base with the navigated controlled drill employed for a mastoidectomy (pre clinical evaluation)." *Medicine Meets Virtual Reality* 

Olds, Kevin. *Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery*. Thesis. Thesis / Dissertation ETD, n.d. N.p.: n.p., n.d. Print.

Strauss, Gero, Kirill Koulechov, Mathias Hofer, Elmar Dittrich, Ronny Grunert, Hendrick Moeckel, Eva Müller, Werner Korb, Christos Trantakis, Thomas Schulz, Juergen Meixensberger, Andreas Dietz, and Tim Lueth. "The Navigation-Controlled Drill in Temporal Bone Surgery: A Feasibility Study." *The Laryngoscope* 117.3 (2007): 434-41. Web.