Notes for PA5: Deformable Registration to a Statistical Shape Model

Russell H. Taylor
John C. Malone Professor of Computer Science, with joint appointments in Mechanical Engineering, Radiology & Surgery
Director, Laboratory for Computational Sensing and Robotics
The Johns Hopkins University
rht@jhu.edu

Barycentric Coordinates of Deforming Triangle

\[c = \zeta \hat{m}_s + \xi \hat{m}_t + \psi \hat{m}_u \]
Barycentric Coordinates of Deforming Triangle

\[
\vec{c} = \xi \vec{m}_s + \xi \vec{m}_t + \psi \vec{m}_u,
\]

\[
\vec{m}_s = \vec{m}_{0,s} + \sum_{m=1}^{N_{\text{modes}}} \lambda_m (t) \vec{m}_{m,s},
\]

\[
\vec{m}_t = \vec{m}_{0,t} + \sum_{m=1}^{N_{\text{modes}}} \lambda_m (t) \vec{m}_{m,t},
\]

\[
\vec{m}_u = \vec{m}_{0,u} + \sum_{m=1}^{N_{\text{modes}}} \lambda_m (t) \vec{m}_{m,u},
\]

\[
\vec{q}_{m,k} = \zeta_k \vec{m}_{m,s} + \xi_k \vec{m}_{m,t} + \psi_k \vec{m}_{m,u},
\]

\[
\vec{c}_k (t) = \vec{q}_{0,k} + \sum_{m=1}^{N_{\text{shapes}}} \lambda_m (t) \vec{q}_{m,k}.
\]

Deformable Registration to SSM

Step 1: For sample points, find closest matches to current mesh.

Step 2: Solve \(\vec{F} \cdot \vec{d}_k \approx \vec{q}_{0,k} + \sum_{m=1}^{N_{\text{shapes}}} \lambda_m (t) \vec{q}_{m,k} \)
for \(\vec{F} \) and/or \(\lambda_m (t) \).

Step 3: If change the shape parameters then update bounding boxes.

Step 4: Iterate to convergence.
Note: Updated bounding boxes may increase overlap. However, this is generally OK, since some small loss of efficiency is acceptable. You can occasionally rebuild the whole tree if it becomes an issue.