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Homework Assignment 4 – 601.455/655 (CIRCLE ONE) 

Fall 2023 

Instructions and Score Sheet (hand in with answers) 
Name  

Email  

Other contact 
information (optional) 

 

Signature (required) I have followed the rules in completing this assignment       
                                  _____________________________ 

Name  

Email  

Other contact 
information (optional) 

 

Signature (required) I have followed the rules in completing this assignment 
                                  _____________________________ 

 
Question  Points Points Subtotal 

1A 5   
1B 5   
1C 10   
1D 10   
1E 10   
2A 10   
2B 10   
2C 20   
2D 15   
2E 10   
3A 5   
3B 5   
3C 15   
3D 5   

Total 135   
 Min (Total, 100)   

 
NOTE: Note: There 135 total possible points in this assignment, but at most 100 will count 
toward your final letter grade. 
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1. Remember that this is a graded homework assignment.  It is the functional equivalent of 

a take-home exam. 
2. You are to work alone or in teams of two and are not to discuss the problems with 

anyone other than the TAs or the instructor. 
3. It is otherwise open book, notes, and web.  But you should cite any references you 

consult. 
4. Please refer to the course organizational notes for a fuller listing of all the rules.  I am not 

reciting them all here, but they are still in effect. 
5. Unless I say otherwise in class, it is due before the start of class on the due date posted 

on the web. 
6. Sign and hand in the score sheet as the first sheet of your assignment. 
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Question 1 
Consider the robot manipulator shown in 

Fig. 1, which comprises a 6 degree-of-
freedom parallel-link section carrying a 
multiple degree-of-freedom serial-link arm.  
The parallel link mechanism has six linear 
actuators, each connected by a spherical 
joint to the base of the robot at positions  
in the coordinate system of the robot.  Each 
of these linear actuators is attached to a 
corresponding spherical joint on a moving 
plate, as shown in the figure, The length of 
each actuator is given by a distance  
between the corresponding attachment 
points.  The position and orientation of the 
moving plate with respect to the base of the robot is given by , where .  The 

position of the attachment point to the moving plate corresponding to base attachment point  
is given by  in the plate coordinate system. 

The serial link second stage is attached rigidly to the plate and has  joints with a known 
kinematic design.  The position and orientation of the end effector relative to the plate 
coordinate system is given by  where .  Thus the position and 

orientation of the end effector with respect to the robot base is .  The “right 

side: Jacobean of  is given by , so that 

   

The robot’s end effector is equipped with a force/torque sensor that is able to resolve forces  
and torques   resolved in the end-effector coordinate system.  For convenience, we will use 

the symbol .  

A. Suppose that the value of  is fixed to a known value.  Give formulas for computing the 
values  such that , where  is some desired target pose for 
the end effector.  Hint: Note that the values can be computed directly from . 

B. Suppose, now that there is a new desired pose for the end effector .  
Assuming that , provide a linearized approximation for the required 
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Fig. 1: Parallel-Serial Link Manipulator 
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change in plate pose such that , where .  I.e., 

express  and  in terms of , , and the other quantities in the system.  Your answer 

should be expanded sufficiently so that terms like  have been simplified out.  Terms 

of the general form  where  represents some sort of matrix are fine.  Hint: 

Remember that . 

C. Similarly, give expressions for  and  corresponding to a small change in plate position 

.  Again, your answer should be expanded sufficiently so that terms 

like  or  have been simplified out.   

D. For the moment, keeping  fixed, compute  required to move the end effector to a new 
pose . Express in terms of , , and the other quantities in the system. 
Again, your answer should be expanded sufficiently so that terms like  or  
have been simplified out. Hint: You may want to consider producing a formula relating small 
motions  of the plate to small changes  in  and incorporating this formula 
into your answer. 

E. For convenience, we can define  and .  Suppose now that the 

values of  can change as well as the values of , give linearized formulas for computing 

, i.e., for computing  and . Again, your 

answer should be expanded sufficiently so that terms like  or  have been 
simplified out. 

Question 2 
For now, we will continue to refer to the robot in Question 1.  For this question, you can also 

assume that functions to compute  and  are available.  
Suppose that each of the linear actuators has a (very stiff, but non-negligible) degree of 
compliance, so that a linear force  along the direction of the actuator will produce a small 
length change , where  is a spring constant associated with actuator .  We 
are interested in assessing the stiffness of the system at the end effector.  Let  represent the 

k’th component of  (e.g., , etc.) and let  represent a torque or force in the 

corresponding direction.  If we ignore friction and other complicating factors, then will 

produce a deflection , where  is an effective spring constant.  In general this 

value will depend on the configuration variables .  In the questions below, you should 
assume that the deflection is not measurable by the encoders used in the linear actuator 
control.  I.e., if the encoders say that the parallel actuators are at , the actual positions will be 

.  Further, you can assume that  is small. 
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A. Produce a formula for computing  for .  Hint: Remember that the energy 

expended in deflecting a linear spring with spring constant  by an amount   is   
and recognize that you are expending energy by deflecting the end effector.  You know the 

. 

B. Suppose that you have successfully derived a formula for , and that the force/torque 

sensor has reported values .  This will produce some deflection of the end effector.  
Describe a method for using the linear actuators to compensate for this deflection.  For the 
purposes of problem 2.B, you can ignore any complications that arise from the fact that the 
robot is actually controlled with some sort of real time periodic process.  We are just looking 
for a one-time adjustment. 

C. Suppose now that the robot design has been improved, so that compliance of the linear 
actuators may be ignored.  I.e., suppose that the values are extremely high. We wish to 
implement a simple admittance controller for the robot.  I.e., given measured force/torque 
sensor values , we wish the robot’s velocity (relative to the end effector coordinate 

system) to be given by .  The basic run loop should look something like this: 

Step 0: Wait for the next time step . 

Step 1: Measure the state .  Also, either measure or estimate velocities  and   

Step 2: Compute incremental actuator motions  and for the current  time step 

Step 3: Output actuator velocities /  and . 
Step 4: Go back to Step 0. 

Your job is to describe how to implement Step 2.  Note that the robot is redundant, so you 
cannot simply invert a matrix.  You need to observe the following position and velocity 
constraints: 

  

You can assume that the robot accelerates instantly and that the computation requires 
negligible time, so that the robot actuator velocities  and will be the commanded values 
throughout the time step (and thus that the actuator motion increments for the time step will 
be the computed  and .  Although the accelerations are assumed to be 
instantaneous, you are also asked to minimize the change in joint velocities from time step 
to time step, and you should try to keep all the actuators as close as possible to the midpoint 
of their range.  If you cannot achieve the desired admittance, you should try to achieve it as 
closely as possible, subject to the other constraints.  The relative importance of the three 
desired behaviors are as follows: 

• Importance of providing the desired admittance behavior:   
• Importance of keeping actuators near midpoint:  and  for the two sets of 

actuators 
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• Importance of minimizing speed changes:  and  for the two sets of 
actuators 

 
Hint: Here, I am asking you to set up an appropriate constrained least squares optimization 
problem.  Remember that you can have both inequality and equality constraints. You should 
use equality constraints to make your answers clearer. I don’t want you to have to carry out 
extensive algebraic substitutions to get rid of equalities.   Also, you should feel free to use 
appropriate linear approximations to simplify your constraints and objective functions.  For 
example, you may want to find an appropriate linear approximation expressing  in terms 
of  and as in Question 1.D.  Also, if you rely on an answer from a previous problem, 
you should indicate the fact, and say which answer you are relying on. 

D. Suppose that the forces  is Question 2.C are produced by a combination of forces 
exerted by the surgeon on a tool attached at the end effector and gravitational forces due to 
the weight of the tool with weight  and center of gravity . How would you modify your 
answer to Question 2.C so that the robot only responds to forces and torques exerted by the 
surgeon? To simplify matters, you can assume that a function.   is available to 
compute the forces and torques due to gravity exerted by the tool at the end-effector 
interface. Also, you can assume that the speed of the robot is slow enough so that you can 
ignore inertial forces, and only consider forces due to gravity.   

E. Suppose, now, that you cannot ignore the actuator stiffness that you considered in 
Questions 2.A and 2.B. How would you modify your answer to Question 2.C to minimize the 
effect of deflection due to ? 

Question 3 
Assume that you have a correct answer to Question 2.C.  Also, you can also assume that 

functions to compute  and  are available.  This problem asks 
you what you would add to your solution to provide some virtual fixtures to assist a surgeon.  In 
the scenario shown in Fig. 2, a surgical 
tool (which you can think of as a 
surgical cutter or drill, if you like) has 
been attached to the end-effector of the 
robot.  The coordinate system 
associated with the tool tip, relative to 
the end effector, is . 

A portion of a patient’s anatomy 
has been placed in a fixed position 
within the work volume of the robot.  A 
CT scan has been made; a 
segmentation step has been performed 
to identify the surface of a target 
structure; and an additional 
computation has been performed to 
compute a signed Euclidean distance 
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to the structure of every location of interest within the vicinity of the structure.  The distance is 
positive for points “outside” of the structure, zero for points on the surface, and negative for 
points “inside” the structure.  This information is stored in a CT-like volume with the same 
coordinates as the CT scan.  Thus, for every voxel in the CT image, the software has stored a 
real number corresponding to the signed Euclidean distance to the structure, together with the 
CT coordinates of the closest point on the structure.  Software is available that interpolates this 
data.  The following subroutines are available for any structure :  

 

For the purposes of this exercise, you can assume that the structure is fairly smooth, so that 
the surface has no sharp corners and that there is no ambiguity about what is the closest point 
and that the closest points to voxels that are close to each other are also close to each other, 
and vice versa.  The system has also performed segmentation to identify additional anatomic 
structures (such as the surface of the patient) and has computed additional signed Euclidean 
distance maps for these structures.  These structure are also assumed to be reasonably smooth 
but with sufficient asymmetry that they may be used for a registration algorithm. 

A. Give a linearized equation or system of equations giving the position  of the tip of the 
tooltool relative to the base of the robot after a small motion to a new position 

.  Express your answer in terms of , , and . Again, 

avoid expressions with things like .  Hint: It is fine if you give expressions for 

 and then express the new tool tip position in terms of .  Or 
you can substitute things out.   Hint: You may want to consider producing a formula relating 
small motions  of the plate to small changes  in  and incorporating this 
formula into your answer. 

B. The surgeon has hand guided the robot to a number of points  (in robot coordinates) on 
the surface of the anatomic structures to be used for registration.  For some reason, the 
engineer designing the system has developed a virulent dislike of ICP and does not want to 
implement a “find closest point” algorithm.  Please describe a suitable alternative algorithm 
that the engineer might use to compute a registration transformation  so that any point  

in CT coordinates has the position  relative to the base of the robot.  You may assume 

that a reasonably accurate initial guess  is available.  Here, you should describe the 
approach in sufficient detail so that it is clear how it relates to the problem data, but you do 
not need to provide all the algorithmic details.  You should discuss some of the efficiency 
trade-offs involved. 

C. Now, assume that a suitable algorithm for Question 3.B has been implemented, so that  
is known.  How would you modify your answer to Question 2.C to ensure that the tool tip 
never penetrates to a depth greater than  below the surface of the critical structure.  
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Hint: This will require adding some constraints to an optimization problem.  Remember that 
you can have both equality and inequality constraints. 

D. How would your further modify you answer to Question 3.C to assist the surgeon to keep the 
tool tip as close as possible to the surface of the critical structure while being able to move 
the tool freely along the surface.  The importance of staying as close as possible is given by 

.    ηsurf


