

RADIOTHERAPY

Todd McNutt PhD Associate Professor Radiation Oncology Johns Hopkins University

Radiation Therapy : Primer

- The use of radiation to eradicate a tumor
 - Optical light: a few eV
 - Diagnostic x-rays: 20 80 keV; < $\frac{1}{4}$ " of Pb
 - Therapeutic x-rays: 1 6 MeV; 2 ft of concrete, 7" of Pb
- Always try to kill the tumor but not the patient
- Conform dose to the target
- Fractionation: Delivery of dose over several weeks for better normal tissue repair
- Accuracy requirements: 5% change in dose can result in observable biological response

Major Linac Components

- Electron gun: filament emits electrons into the waveguide
- Accelerating waveguide: uses high-energy microwaves to accelerate electrons to within 0.03% of the speed of light
- Bending magnet: steers high-energy electrons from a "waveguide" toward the patient

Travelling wave

Standing wave

Major Linac Components

- X-ray target: heavy-metal target that absorbs electron energy to create photons via bremsstrahlung radiation
- **Carousel**: electron scattering foils and photon flattening filters for each beam energy
- Monitor ion chambers: measure the amount of radiation emitted from the carousel

Photons

Electrons

Photon Dose vs Depth, Energy/Beam Quality

- Higher energy ~ Greater penetrating power ~ Higher PDD
 - Build up is deeper with higher energy

Family of photon beam profiles

Figure 11-1 Graphic representation of several measured beam profiles of the type often entered into a treatment planning computer. The illustration shows a number of profiles made along lines perpendicular to the central axis at several depths in a water phantom.

- Dose greatest @ CAX
- Dose decreases @ beam edge
- "Horns" common near surface
 of accelerator beams
- Dose fall of near beam edge
 - Geometric penumbra
 - Reduced scatter

Electron Energy Dependence

- Lower surface dose (quick buildup) for lower energy beam
- Dose gradient steeper for lower energy electron
- More x-ray contamination for higher energy beams

FIG. 8.7. Measured isodose curves for 9 and 20 MeV electron beams. The field size is $10 \times 10 \text{ cm}^2$ and SSD = 100 cm. Note the bulging low value isodose lines for both beam energies. The 80% and 90% isodose lines for the 20 MeV beam exhibit a severe lateral constriction. The abscissa and the ordinate represent distance from the central axis and depth in a water phantom, respectively, measured in centimetres.

Proton depth dose

Bragg Peak vs Energy

JOHNS HOPKINS

Spread out Bragg Peak

Method: Convolution/Superposition

$$D(\vec{r}) = \int_{V} T(\vec{r}') \cdot A(\vec{r} - \vec{r}') d^{3}r'$$

Convolution/Superposition: Heterogeneities

Open anterior beam

JOHNS HOPKINS Fast Convolution/Supersposition Dose Computation on GPU

Performance							
			64 ³			128 ³	
Engin	Kernel Type	Rays	Time (s)	VPS	Speedup	Time (s)	Speedup
GPU	CCK, Tilting [*]	72	0.198	5.051	41.8x	2.801	33.7x
GPU	CCK, Non-tilting	80	0.159	6.289	52.0x	2.254	41.9 x
GPU	CCK, Tilting [*]	32	0.086	11.628	96.1x	1.246	75.8x
GPU	CCK, Multi-Reso	80	0.097	10.309	85.2x	0.963	98.1x
GPU	CCK, Multi-Reso	32	0.042	23.810	N/A	0.411	N/A
Pinna	CK. Non-tilting	80	8.268	0.121	1.0x	94.51	1.0x

Target and Clinical Structure Definition

- Planning begins by defining the regions of interest within the patient

Manual Tools

- Line Drawing
- Paint Brush
- 3D tools

Auto Contouring

- Threshold
- Gradient/Edge detection
- Model based

Display

- Contours
- Colorwash
- Polygons (2D and 3D)

3D

Modern Medical Accelerator ^(A) and Intensity Modulation (IMRT)

Isodose Lines Comparing 3D and IMRT Conventional IMRT

McNutt 2009

CTV63 CTV70 PTV58.1 PTV63 PTV70 brainstem cord cord+4mm esophagus larynx for edema it brachial plexus it parotid non-targ mand oral mucLmt rt brachial plexus

rt parotid

Dose Volume Histograms are used to analyze treatment plan quality by determining what percent of a region of interest receives how much dose.

VMAT – Volumetric Modulated Arc Therapy

Target Volume Specification (late 80's)

- GTV Gross Tumor Volume
- CTV Clinical Target Volume
- PTV Planning Target Volume
 - Accounts for internal organ motion and patient setup variations during the course of treatment.
- All 'TVs are a statement of the uncertainties (or our ignorance)
 ---- research opportunities

PTV prescribed with 1st day CT Organ motion detected on first 5 days

Patient Specific cl-PTV after 5 days

JOHNS HOPKINS

Convex-hull to account for organ motion

Final PTV (setup and organ motion)

Cone Beam CT Accelerator for On-line intervention

Adaptive Planning Prototype

File Opt	ions U	tilities View _	CINE PLA		ADTION REPLAN Models	I _{MRT} InvPlan	Patient: ART Plan: Demo3	_206,, Pred OFrac	dicted
4 D Plan Ev Plan type: Current Fr	AD Plan	Create 4D Pla Date	n] MU [Deliver	ed Fraction Group				Original Trial
	[1] [2] [3] [4] [5] [6] [7] [8]	[12/19/03 [12/20/03 [12/21/03 [12/22/03 [12/22/03 [12/22/03 [12/28/03 [12/28/03	[253] [253] [253] [253] [253] [253] [253] [253] [253] [253]		Delivered Delivered Delivered Predicted Predicted Predicted Predicted				Ton o as to a contract of the second of the
Add Fractio	Delet 0lume his 1.0 0.3 0.7 0.8 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.1 0.0 10	te Current Fraction stogram B Dose Volum Dose Volum D00 2000 3000 D00 2000 3000	Accur iological ne Histog	ram	Fractionated Dose C nse	opy Cu	rrent Predicted t ials ROIs Original ReoptAccumul Accumulated Delivered Predicted	Medium Solid Medium Dash Thin Dashed Thin Solid Thin Solid	Accumulated Busines Humor Hall Humor Ha

Commercial on-line adaptive

(a) MRIdian (ViewRay, Cleveland, OH, US)

(c) Ethos (Varian Medical Systems, Palo Alto, CA, US)

Commercial online adaptive radiotherapy systems. **a** MRIdian (ViewRay, Cleveland, OH, USA), **b** Unity (Elekta AB, Stockholm, Sweden), **c** Ethos (Varian Medical Systems, Palo Alto, CA, USA)

Extract, Transform, Load

Head and Neck Inventory

Age Distribution

Totals: 418 female

1195 male

1613 total

Targets

ptv_6300	723
ptv_7000	556
ptv_6000	435
ptv_5400	390
ptv_5425	234
ptv_6600	233
ptv_5810	230
ptv_6240	117
ptv_5940	115
ptv_5520	105
ptv_6720	97
ptv_6120	75
ptv_7200	70
ptv_5760	66
ptv_6996	60
ptv_5600	56

Normals

		-	
cord	1512	I_ear_inner	932
brainstem	1499	esophagus	879
mandible	1457	cricopharyngeal_muscle	827
L parotid	1449	r_ear_middle	758
i_paroliu	1440	oral_cavity	756
r_parotid	1437	I ear middle	746
r_eye	1436	soft palate	688
I_eye	1431	cord avoidance	637
brain	1411	glottis	600
r_lens	1382	constr muscle pharvngeal	575
I_lens	1373	ctv 6300	567
chiasm	1358	comb parotids	566
I_optic_nerve	1317	I_cochlea	558
r_optic_nerve	1314	r cochlea	543
l_submandibular	1131	endolarynx	527
r_submandibular	1108	midline_avoidance	493
thyroid	1022	sublingual	476
		4	170

Total: 29579 assessments shown

Prostate Inventory

~2100 pts - ~1500 with dose

Age Distribution

Totals: 0 female 2096 male

2096 total

Targets

-	
ptv_prostate_sv	568
ptv_prostate_bed	448
ptv_prostate	387
ptv_nodes	349
ptv_prostate_brachy	237
ptv_prostate_bed_cd	207
ptv_prostate_sv_nodes	150
ptv_prostate_bed_nodes	87

Normals

rectum	1798
bladder	1472
I_head_femur	1418
r_head_femur	1414
bowel	817
penile_bulb	511

Thoracic Inventory

~1700 pts

Age Distribution

682 female

831 male

1513 total

Inventory of Longitudinal Clinical Assessments 1400 1200 1000 800 600 400 200 0 4w-бw 6w-8w 8w-3m 6m-1y 1y-2y 2y-3y 3y-4y QOL-1. Pain FEV1 (% pred) Weight (kg) >6 vrs Absolute Lymph Count(JH) Cough (CTC 4.0) Dysphagia (CTC 4.0)

Total: 22894 assessments shown

Esophagus DVH vs Dysphagia CTCAE

Targets

V	
gtv_fb	675
gtv_0pct	549
PTV	418
ptv_final	323
gtv_60pct	311
gtv_50pct	215
GTV	211
ptvexp	178
ptv_5mm_exp	164
gtvroi	148
gtv_min	83
gtv_max	83

Normals

of Patients

-11-

-		_
R_Lung	1633	
L_Lung	1629	
Esophagus	1452	
Lungs	1385	
Trachea	1322	
Heart	836	
SpinalCord	823	
Pericardium	711	
Liver	349	
R_Kidney	267	
L_Kidney	264	
Thyroid	135	

Knowledge based planning

Overlap Volume Histogram

OVH: serial vs parallel (Wu, Taylor, Kazhdan, Simari, McNutt)

For parallel organs, **OAR2** is more easily spared. For serial organs, **OAR1** is more easily spared.

OVH vs DVH

Bladder vs ptv_prostate_sv

Distance

2 0.6

> 0.4.

Distance

2. 0.4

\$ 0.4

S

Left parotid vs ptv_5810

Mandible vs ptv_7000

New model predictions with Random Forest

Features: OVH-xyz, OVH-xy, OVH-z, PTV-Volume, PTV-Concavity...

Lowest achievable = Predicted median of the 5th percentile of doses given a set of input features at each %v **Expected** = Predicted value of prior similar plans

Predicted Plan objectives

			* E = 🍘	Todd McNutt Oncospace Demo Clinic
PATIENT NAME Thoreau, HD		VALIDATE Patient Data	CONFIGURE Planning Protocol	EVALUATE Goals & Plan
valuate Goals & Plan ast Updated: October 16th, 2021, 6:53 AM			← Back Next → Plan Viewe	r 🖺 Save La
initial V	Predictions Results			
V TARGETS		ORGANS AT RISK		
✓ ptv_prostate_bed	<pre>ptv_prostate_bed_nodes</pre>	Iladder	L_Head_Femur	
		PenileBulb	R_Head_Femur	
<pre>ptv_prostate_bed_nodes_ring_10-20m ptv_prostate_bed_ring_10-20mm</pre>	m ptv_prostate_bed_nodes_ring_2-10mm ptv_prostate_bed_ring_2-10mm	ptv_prostate_bed_nodes_ring_20-40mm ptv_prostate_bed_ring_20-40mm	<pre>ptv_prostate_bed_nodes_ring_40-60mm ptv_prostate_bed_ring_40-60mm</pre>	
		250 1,00 3,50 DDSE (COY)		
D	ecember 3 2024	1		

ONCOSPACE			e 🗉 🛎 🌒	Todd McNutt Oncospace Demo Clinic
PATIENT NAME Thoreau, HD		VALIDATE Patient Data	CONFIGURE Planning Protocol	EVALUA Goals & P
uate Goals & Plan dated: October 16th, 2021, 6:53 AM			$\underbrace{ \left(\leftarrow \text{ Back} \right)}_{\text{Next}} \underbrace{ \textcircled{ Plan View}}_{\text{Flan View}}$	er 🗃 Save
redown V	Predictions Results			
TARGETS	V ptv_prostate_bed_nodes	organis at resk	🛃 L_Head_Femur	
		PenileBulb	R_Head_Femur	
DOSE SHAPING STRUCTURES				
ptv_prostate_bed_nodes_ring_10-20mm	ptv_prostate_bed_nodes_ring_2-10mm	ptv_prostate_bed_nodes_ring_20-40mm	ptv_prostate_bed_nodes_ring_40-60mm	
ptv_prostate_bed_ring_10-20mm	ptv_prostate_bed_ring_2-10mm	ptv_prostate_bed_ring_20-40mm	ptv_prostate_bed_ring_40-60mm	
(%) and its a		200 1400 1000 2,000 2,200 2	40 200 200 300	
	200 400 000 000 1,000 1	DOSE (CGY)		

38

December 3, 2024

Autoplan result

Comparison

Goal †≞	Protocol ↑↓	Predicted Range ↑↓	Plan Value †↓	Comparison	Goal 🏦	Protocol ↑↓	Predicted Range $\uparrow\downarrow$	Plan Value ↑↓	Comparison
Sladder					Bladder				
V8000cGy[cc]	≤ 1-7.5 cc	0 - 0	0		V8000cGy[cc]	≤ 1-7.5 cc	0 - 0	0	<u>o</u>
V4500cGy[%]	≤ 35-55%	50 - 56	64		V4500cGy[%]	≤ 35-55%	50 - 56	55	<u>C</u>
V5000cGy[%]	≤ 30-50%	46 - 51	59		V5000cGy[%]	≤ 30-50%	46 - 51	51	()
V6000cGy[%]	≤ 20-40%	38 - 44	50		V6000cGy[%]	≤ 20-40%	38 - 44	44	
V7000cGy[%]	≤ 10-30%	0 - 2	1		V7000cGy[%]	≤ 10-30%	0 - 2	0	
V7500cGy[%]	≤ 5-25%	0 - 0	0		V7500cGy[%]	≤ 5-25%	0 - 0	0	

L_Head_Femur

R Head Femur

Sigmoid_Colon

December 3, 2024

Al prostate planning results

Song, Ennis, Showalter

APFLDO (P	1 High) Feature Ratings (1	worst – 5 bes	t)	ICILHD (P1	High) Feature Ratings (1	worst – 5 b	est)
Category	Feature	Score	Ave cat.	Category	Feature	Score	Ave ca
Overall	overall quality	3	3	Overall	overall quality	4	4
Targets	tumor coverage	5	5	Targets	tumor coverage	5	5
	tumor homogeneity	5			tumor homogeneity	5	
OARs	bladder sparing	2	4.2	OARs	bladder sparing	3	4.4
	rectum sparing	4			rectum sparing	4	
	femur head sparing	5			femur head sparing	5	
	bowel sparing	5			bowel sparing	5	
	penile bulb sparing	5			penile bulb sparing	5	
Non-ROIs	dose outside ROIs	2	2	Non-ROIs	dose outside ROIs	3	3
PI	an clinically acceptable?	margir	nal	Plan	n clinically acceptable?)	/es
Comments Dose exten	: ds anterior to pubic symp	hysis		Comments: Better than	APFLDO, but high dose	fully include	s pubic bo
Comparis	on of plan APFLDO vs JCIL	HD (P1 High)			Clinical plan	A	uto plan
	Which plan	is preferable?	JCILHD		M		-
Which as	pect was most relevant in se rectal volumes better:	that selection	overage bev	ond pubic bone			\sim

Figure 13. Example of ratings and overall preference for the pair of plans for high risk patient #1. Dose overlay indicates the advantages of the auto plan commented on in green.

	Clinical	Acceptability of	cceptability of Plan			Preferable F	Preferable Plan			
	RadOnc	Α	RadOnc	В	RadOnc C		RadOnc A	RadOnc B	RadOnc C	Overall
	Auto	Clin	Auto	Clin	Auto	Clin				
Pilot										
P1 Low	Yes	Yes	Yes	Yes	Marginal	Yes	Clin	Auto	Clin	Clin
P1 Int	No	No	No	No	Marginal	Yes	Clin	Auto	Clin	Clin
P2 Int	Yes	Marginal	Yes	Yes	Yes	Yes	Auto	Clin	Auto	Auto
Test							Auto 12-0	Auto 10-2	Auto 9-3	Auto 12-0
P2 Low	Yes	Marginal	Yes	Yes	Yes	Yes	Auto	Auto	Auto	Auto
P3 Low	Yes	Yes	Yes	Yes	Yes	Yes	Auto	Auto	Clin	Auto
P4 Low	Yes	No	Yes	No	Yes	No	Auto	Auto	Auto	Auto
P3 Int	Yes	Yes	Yes	Yes	Yes	Yes	Auto	Auto	Clin	Auto
P4 Int	Yes	Yes	Yes	Yes	Yes	Marginal	Auto	Auto	Auto	Auto
P5 Int	Yes	Yes	Yes	Yes	Yes	Yes	Auto	Auto	Auto	Auto
P1 High	Yes	Marginal	Yes	No	Marginal	Marginal	Auto	Auto	Clin	Auto
P2 High	Yes	Yes	Yes	Yes	Yes	Yes	Auto	Clin	Auto	Auto
P3 High	Yes	Yes	Yes	Yes	Yes	Yes	Auto	Clin	Auto	Auto
P4 High	No	No	No	No	Marginal	No	Auto	Auto	Auto	Auto
P5 High	Yes	Marginal	Yes	Yes	Yes	Yes	Auto	Auto	Auto	Auto
P6 High	Yes	Marginal	Yes	Yes	Yes	Yes	Auto	Auto	Auto	Auto

RadOnc A, High Risk Patient #1

42

Learning health system – Decision Support

IOHNS HOPKINS

DICIN

DVH, Toxicities and Grade distributions

IOHNS HOPKINS

DICIN

DVH, Toxicities and Grade distributions

Longitudinal measures

46

Results: Weight loss prediction <u>at planning</u> Endpoint: > 5kg loss at 3 months post RT

- Predictors:
 - (1: Diagnosis) ICD-9 code
 - (2: Dosimetry) dose to swallowing muscles, larynx, parotid
 - (3: Patient) age
- Prediction result: High negative predictive value
 - The model can screen out patient without weight loss
 - Physicians can focus on patients with high probability of weight loss

Results: Weight loss prediction <u>during RT</u>

Endpoint: > 5kg loss at 3 months post RT

- Predictors:
 - (1: QOL) patient reported oral intake
 - (2: Diagnosis and staging) ICD-9, N stage
 - (3: Dosimetry) dose to larynx, parotid
 - (4: Toxicity) skin toxicity, nausea, pain
 - (5: Geometry) minimum distance b/w PTV, larynx

Sierra Zhi Cheng MD MS Minoru Nakatsagawa PhD

Length of circumferential esophageal dose vs weight loss P. Han et al.

Table 2. Weight loss prediction using Ridge

Variable	importance*
Pre-treatment albumin	100
L _{F(65)}	85
Marital status	53
L _{F(60)}	45
L _{P(65)}	42
ECOG performance status	36
L _{F(55)}	35
Chemotherapy (full dose vs. none)	32
L _{P(60)}	31
Race	24

Our Xerostomia Story

an example of possibilities for data-driven outcome-based planning

Raw DVH data for salivary glands

Dose

Dose

December 3, 2024

Dose

52

Dose

Toxicity and Dose Volume Histogram

(Scott Robertson et al...)

DoseToxAnalysis		
Head and Neck	Default DVH plot	1. Logistic Regression Of Dose Profiles
Update DVH List Update Outcome List	Update DVH Plot	Update Analysis
brachial_plexus_1 brachial_plexus_r brainstem chiasm combo_constr_muscle combo_ear_inner combo_ear_outer combo_ear_outer combo_ears combo_enar combo_enar combo_ears	combo parotid - xerostomia (N=244) $\begin{array}{c} 0.9\\ 0.8\\ 0.7\\ 0.7\\ 0.7\\ 0.6\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7$	probability of ≥ Grade 2 xerostomia 0.9 0.8 0.7 0.7
combo_parotid combo_sternocleidomastoid combo_sternocleidomastoid combo_tmjoint constr_miscle inferior d min k transformation to the state of the st	volue volu	Image: Top 0.6 0.6 Image: Top 0.5 0.5 Image: Top 0.5 0.5 Image: Top 0.5 0.4
combo parotid xerostomia		Ē 0.30.3
Load Data Months Post-Tx: 3 to 6	0.2 0.1	0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Min: 0 Outcome Cutoff: 2 Max: 3	0 1000 2000 3000 4000 5000 6000 7000 8000 combo parotid dose / cGy	0 2000 4000 6000 8000 combo parotid dose / cGy

Xerostomia Prediction (3-6 Months post RT) 💩 JOHNS HOPKINS

Xerostomia prevalence separated by age = 51

Xerostomia<2age(0-51):

Initial size: 175 25% lost follow up at time: 26 50% lost follow up at time: 74

Xerostomia<2age(51-100):

Initial size: 654 25% lost follow up at time: 27 50% lost follow up at time: 64

12/3/2024

Learning health system – Hypothesis Derivation

Radiation dose transformed to standard atlas

Average dose to each voxel

Standard Deviation of Dose

Mean voxel doses and normalized difference

Acute Xerostomia

Voxel importance pattern comparisons by machine learning Acute Xerostomia (Injury)

***** Ridge** is most appropriate to handle correlated dose variable

Models	Data set (dimension: 427*961)
	AUC (10-fold cross-validation) Out-of-sample score
Ridge logistic regression	0.70 ±0.04
Lasso logistic regression	0.67±0.04
Random forest	0.69±0.06

(a) voxel importance pattern from lasso logistic regression

December 3, 2024

Potential hypotheses

- A. The superior portion of the contralateral parotid is the last region to be able to spare (lowest mean dose). If a high dose, there is likely high dose everywhere else, increasing xerostomia.
- B. Ductal region of ipsilateral parotid has high influence, where the superior portion has very low importance suggesting possible occlusion of duct or serial component of organ function related to injury.
- C. The superior (lower dose) portions of both parotids influence recovery whereas the higher dose regions have little influence. This suggests a lower dose threshold for preserving the ability to recover salivary function if injured.

Influence on CT for Injury

(%)

С

(%)

ð 100

D

right (Gy 40

dose

Reg.

150 r = 0.60

150 r=0.65

50

Predicted flow (%)

50 Predicted flow (%)

Region-dose model

Region-dose model

100

100

30

60

40

Influence on CT for Injury

20 40 Reg. dose left (Gy)

IMRT plans driven by predictions

(McNutt, Lee, Sheikh, Quon)

Original – dashed Injury – thick Recovery – thin

Targets – black Parotids – blue Submandibulars – pink

	Injury Percentile	Recovery Percentile
Original	81.8	13.5
Injury Wt	64.3	18.1
Recovery Wt	69.7	32.0

IOHNS HOPKINS

DICIN

How to stay safe and maintain quality?

- Data is not always the highest quality must make sure methods/models don't assume it is
- Data does not contain all knowledge. Existing knowledge is often absent
 - If all patients in database meet a dose goal, then there is no knowledge outside of that goal contained in the data.
 - Be wary of situations where you may be outside of the available data bounds
- Data gets old
 - How to keep models current?
 - Do we want to be treated the way patients were treated 2 decades ago?
 - The Rx anomaly may be using an old Rx that has been superseded.

Acknowledgments

- Sierra Cheng MD
- Michael Bowers BS
- Joseph Moore PhD
- Scott Robertson PhD
- Pranav Lakshminarayanan
- Xuan Hui MD
- John Wong PhD
- Theodore DeWeese MD
- GI Team
 - Joseph Herman MD
 - Amy Hacker-Prietz PA
- H&N Team
 - Harry Quon MD
 - Ana Keiss MD
- Toronto-Sunnybrook
 - William Song PhD
 - Patrick Kwok

- JHU CS
 - Russ Taylor PhD
 - Misha Kazhdan PhD
 - Fumbeya Murango BS
- Philips PROS
 - Karl Bzdusek BS
- Toshiba
 - Minoru Nakatsugawa PhD
 - Bobby Davey PhD
 - Rachel-Louise Koktava
 - John Haller
- Elekta
 - Bob Hubbell
- University of Washington
 - Kim Evans MS
 - Mark Philips PhD
 - Kristi Hendrickson PhD

Secondary dataset with Deformable dose accumulation **IOHNS HOPKINS** primary IMRT beam Primary dataset arrangement Model-based segmentation Deformable registration Dose Volume Histoora

Dose warping

Secondary dose deformed back to primary plan

A novel data-driven algorithm to predict anomalous prescription based on patient's feature set Qiongge Li, R. Voong, R. Hales, J. Wright, T. McNutt (Submitted)

Automated Cross-Referencing of Radiation Prescriptions to Diagnosis: A Proposed Mechanism to Improve Patient Safety <u>A. Sharabi, T. McNutt, and T. DeWeese; The Johns Hopkins University</u> School of Medicine, Baltimore, MD

IOHNS HOPKINS

Contour Anomalies

Anomaly types:

- Discontinuities
- Size/extent inconsistency
- Shape inconsistency
- Anatomic relationships
- e.g. Rectum contoured into Sigmoid Colon

Kevin Gorman et. al.

December 3, 2024

RADIATION ONCOLOGY PHYSICS

WILEY

Data integrity systems for organ contours in radiation therapy planning

 $\begin{array}{l} \mbox{Veeraj P. Shah}^1 \ | \ \mbox{Pranav Lakshminarayanan}^2 \ | \ \mbox{Joseph Moore}^3 \ | \ \mbox{Phuoc T. Tran}^{1.3} \ | \\ \mbox{Harry Quon}^1 \ | \ \mbox{Curtiland Deville}^1 \ | \ \mbox{Todd R. McNutt}^1 \\ \end{array}$

69

Putting it together...

- Send contours to system
- Map ROI names (auto)
- Evaluate contour integrity
 - Discontinuity
 - Unexpected volume
 - Unexpected shape
- Select Tx protocol

Oncospaci	e				۴ (
Patients					
Patient	ŤΪ	Site 1	Oncospace Wor	kflow Timeline	
			0		_ 0
PredPR5		Prostate	VALIDATE	CONFIGURE	EVALUATI
			Patient Data	Planning Protocol	Goais & Pa
			o —		- 0
RGTProstate2 RGTPR2		Prostate	VALIDATE	CONFIGURE	EVALUAT
			Patient Data	Planning Protocol	Goals & Pla
			o —		
OncoHN8		Head and Neck	VALIDATE	CONFIGURE	EVALUAT
			Patient Data	Planning Protocol	Goals & Pla
Asimon I			0		- 0
PredHN5		Head and Neck	VALIDATE	CONFIGURE	EVALUAT
			Patient Data	Planning Protocol	Goals & Pla
Asimov I			o —	🛛	- 0
OncoHN5		Head and Neck	VALIDATE	CONFIGURE	EVALUAT
			Patient Data	Planning Protocol	Goals & Pla
X-1-1-1			0 —		- 0
PredPR12		Prostate	VALIDATE	CONFIGURE	EVALUATI
			Patient Oata	Planning Protocol	Goa's & Pla
0.00000000			Ø —		
Asimov, I OrioRGTHNS			VALIDATE	CONFIGURE	EVALUAT
ongramma			Patient Data	Planning Protocol	Goais & Pla
			0		
Darwin, C OncoHN2			VALIDATE	CONFIGURE	EVALUAT
STATISTIC.			Patient Data	Panning Protocol	Goals & Pla
2010000000			0		_ 0
Carver, GW		Head and Neck	VALIDATE	CONFIGURE	EVALUATI
OncoHN6					

Causality (Shpitser)

Semi-Parametric Causal Sufficient Dimension Reduction Of High Dimensional Treatments

Razieh Nabi, T. McNutt, I. Shpitser • Published 2017 • Mathematics • arXiv: Methodology

Cause-effect relationships are typically evaluated by comparing the outcome responses to binary treatment values, representing cases and controls. However, in certain applications, treatments of interest are continuous and high dimensional. For example, understanding the causal relationship between severity of radiation therapy, represented by a high dimensional vector of radiation exposure values at different parts of the body, and post-treatment side effects is a problem of clinical interest... Expand

are computed by estimating β via (a) IPW estimator, and (b) AIPW estimator. Heat are antidiagonally symmetric with opposite color tones.

- Notion of Dimension Reduction with consideration of Causal
 Inference
 - DVH point is dimension reduction
 - Principle Components...
- Can we blend with anatomical/physiological understanding?
- Does it work with the inherently controlled treatment?
- Spawned interest with van Herk and Christie Hospital Manchester, UK

Decision Support Efforts

- Weight loss prediction
 - Head and neck (PEG Tube ?)
 - Thoracic with Image features
- Alcorn BMETS example
- Challenges
 - Clinical decisions that impact trajectory of care