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Before joining the Johns Hopkins University in 

July 2020:

• Undergraduate and master’s degrees at the 

University of Karlsruhe in Germany 

• PhD at Johns Hopkins

• Product Leader Sentinelle Medical Inc and 

Hologic Inc 

• Assistant Research Professor at the Sheikh 

Zayed Institute at Children’s National 

• Assistant Professor in Mechanical Engineering 

at the University of Maryland 

Quick Introduction
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• Vision and challenges for smart and autonomous 

surgery and interventions 

• Supervised autonomous anastomosis

• Magnetically steered robotic surgery

• Autonomous tumor resection surgery

• Learning autonomous surgical subtasks

Outline
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• 310 million major surgeries are performed globally each year

• In 2023 about 4 million procedures are performed with robot assistance

• Large penetration in urology and big market potential in other surgeries

• Estimated annual growth rate of 18%

Surgical Robotic Market

Source: 
globaldata.com

Source: British Association 
of Urological Surgeons 2020
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Susan Moffatt-Bruce, Juan Crestanello, David P Way, and Thomas E Williams Jr. Providing cardiothoracic services in 2035: Signs of
trouble ahead. The Journal of thoracic and cardiovascular surgery, 155(2):824–829, 2018.

2010 2020 2030 2040 2050

2035 Caseload more than 2x
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• Blood loss, recovery time, 
scarring, and infections scale with 
the degree of invasiveness.

• Current tele-operated robotic 
surgery has increased minimally 
invasive surgeries but has not 
reduced complication rates

• Robotic surgery promises to 
further decrease the invasiveness 
of surgeries by decreasing tool 
size and enabling natural orifice 
approaches.

Da Vinci Surgical Robot

Minimally Invasive Surgery

Xiaona Wang, Max Q.-H. Meng, "Robotics for Natural Orifice Transluminal Endoscopic Surgery: A Review", Journal of Robotics, vol. 2012, Article ID 
512616, 9 pages, 2012. https://doi.org/10.1155/2012/512616

Natural Orifice Transluminal Endoscopic Surgery (NOTES)
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• Manufacturing complex robots at small 
scales introduces challenges in fabrication

• Smaller and softer robots deflect under load 
and are limited in force transmission.

• Less invasive approaches limit ability of 
camera guidance.

Soft robotic catheter

Challenges of Reducing Invasiveness

Magnetically actuated milli robot
Erin et al. Advanced Intelligent Systems, 2022. 
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• Manual and robot assisted operations depend 
heavily on experience, skill, mental and physical 
state of operating surgeon

• Augment critical portions of manual surgery 
with robotic precision with increasing 
autonomy

• To reduce complications

• To democratize access to expert surgery for 
everyone

• To alleviate shortages in trained surgeons

• To provide essential care in environments 
where no surgeon is available such as trauma

• Autonomous functions limited to rigid bony 
anatomy and small sub-tasks

Autonomous Surgery

Yang et al. Science Robotics, 2017



Trend in Autonomy and Invasiveness
# Robot

1 MUSA

2 Mako

3 EndoAssist

4 STAR (2016)

5 VisuMax

6 daVinci Xi

7 DVRK

8 STAR (2022)

9 Jaimy

10 da Vinci SP

11 MagnetoSuture

12 NaviCam

13 Ion

Open Surgery Minimally Invasive Non-Invasive
Micro/Nano

Single Port Natural Orifice
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Challenges – Soft Tissue Deformations 

• The fundamental problems in soft tissue surgery include unpredictable shape 

changes and tissue deformations

• Unpredictable, elastic, and plastic changes in soft tissues pose prohibitive 

challenges when adapting pre-operative surgical plans

• Unlike rigid tissue surgery, autonomous surgical tasks in soft tissue must 

constantly adjust to unpredictable scene changes, including nonrigid 

deformations as a result of cutting, suturing, or cauterizing
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• Perception is very difficult with tissues 

and organs all different shades of pink.

• Tissue and organs are unstructured 

and highly deformable.

• Tissue and organs drastically change 

during surgery.

Robotic prostatectomy

Challenges – Perception and Tissue Tracking
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Autonomous Robotic Laparoscopic Surgery for 

Intestinal Anastomosis
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Mortensen and Ashraf (2008)

Anastomosis

•A necessary and critical part of all reconstructive 
surgery involving any luminal structure.

•Over 1 Million gastrointestinal, urologic and 
gynecologic in the US alone.

•Significant complications exist
• Clinical leaks

• Late stricture

• Adhesions

•Complication rates:
– 25-30% of multivisceral transplantation 

anastomoses

– 19% of colorectal anastomoses 

– 1-2% of cardiovascular
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Smart Tissue Autonomous Robot (STAR)

• Tools: Robotic tools and 

systems to minimize 

deformations and simplify 

procedures

• Imaging and Planning: 

Surgical imaging system 

for 3D tissue tracking

• Control: Robot control 

strategies with increasing 

autonomy 

Robot
arm

Surgical 
Tool

Vision
System

Surgical
Site

Surgeon 
Interface

Breathing 
Simulator
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Robotic Tools - Suturing

Endo360 

• Circular needle drive simplifies 

suture motion

• Allows one-handed operation

• Additional pitch joint

Video:
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3D Imaging Endoscope & Suture Planning Strategy

Image lens

Suture planning strategy: (a) A white reflectance image of the 

cut sample. (b) Collected point cloud with ROI. (c) An example 

of calculated cut groove, left and right cut edges, and the suture 

point. (d) An overlay of the calculated coordinates with suture 

spacing of 4 mm.

Test sample

Camera view

Le HND, Nguyen H, Wang Z, Opfermann J, Leonard S, Krieger A, Kang JU. 

Demonstration of a laparoscopic structured-illumination three-dimensional imaging 

system for guiding reconstructive bowel anastomosis. J Biomed Opt. 2018.
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Surgical Imaging and Tracking

Near-Infrared (NIR) Camera

• Blob tracking using ViSP library

• Blobs are syringe-dispensed markers

• Made from ICG, Permabond

D

A B C

Decker RS, Shademan A, Opfermann JD, Leonard S, Kim PC, Krieger A. Biocompatible Near-
Infrared Three-Dimensional Tracking System. IEEE Trans Biomed Eng. 2017 Mar;64(3):549-556.
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Control System

19

Trajectory

Generator &

Inverse 

Kinematics

Low-level

 Controller
Robot

TissueCameras

Position 

feedback
Tissue 

tracker

3D data 

collection and 

suture planning 

High-level 

suturing 

logic & task 

planner

Human supervision

NIR 

view

Mono-color view 

from

 the 3D endoscope

NIR 

markers

Denoising the plans, generating suture plan 

options, predicting the tool collision with the tissue
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Breath 
tracker

CNN

Breath/motion tracker

Position history in past 2 sec

Relative velocity

© 2022 Johns Hopkins University

CNN: 128x128x2 as input and labels motion as moving/stopped
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Laparoscopic Suturing with STAR

D
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Ex-vivo Testing

Test conditions:

A. Manual laparoscopy (LAP; n = 4)

B. da Vinci SI–based Robotically-Assisted Surgery method (RAS; n = 4)

C. Autonomous robotic anastomosis via STAR (n = 5)
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Ex-vivo Test Results
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Ex-vivo Test Results

Representative examples of the phantom end-to-end anastomosis test 

via LAP, RAS, and STAR including 3D flow fields within each sample.
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STAR Anastomosis – In vivo Testing

• Performed laparoscopic small intestine anastomoses in pre-clinical 

animal testing at Children’s National

Assistant Port

1.0 cm

Assistant Port

0.9 cm

Camera

Gelport 

2.9 cm
Robot Port 

1.8 cm

Assistant Port

1.3 cm
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Back wall (3X playback) Front wall (3X playback)

In vivo Suturing with STAR
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In vivo Test Results
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• Autonomous robotics have the potential to 

complete surgical tasks with more accuracy 

and precision than MIS and RAS technique.

• Accurate tissue tracking, event detection 

algorithms, and novel control strategies 

enable autonomous surgery in soft tissues.

• Clinical testing will require technical 

improvements including:

• Smaller imaging camera

• Markerless tissue tracking

• Improved surgical user interface

Lessons Learned

Saeidi H, Opfermann JD, Kam M, Wei S, Leonard S, Hsieh MH, Kang JU, 

Krieger A. Autonomous Robotic Laparoscopic Surgery for Intestinal Anastomosis. 

Science Robotics. 7, no. 62 (2022). PMID: 35080901. DOI: 

10.1126/scirobotics.abj2908

http://www.science.org/doi/10.1126/scirobotics.abj2908
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Microvascular Anastomosis Positioning System (MAPS)

Introduction
• Microvascular Anastomosis is a suturing procedure commonly 

done during reconstructive surgery
• STAR robot currently autonomously sutures larger structures such 

as intestine, but not blood vessels
Solution
• Robotic tool positions vessels for STAR to perform anastomosis

Nitinol Vessel Holder

Clamp 
Carriage

MAPS

Smart Tissue 
Autonomous 
Robot (STAR)
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Optical Coherence Tomography (OCT) Guidance

OCT 
Fiber

Circular 
Needle Path
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MAPS + STAR Results
• 64/64 successful 

stitches, no double wall 
puncture

• Clinically relevant 
tensile strength and 
lumen reduction

• Similar bite depth 
variance to STAR alone

• Improved spacing 
variance over STAR 
alone

Haworth J, Opfermann JD, Kam M, Wang Y, Yang R, Kang JU, Krieger A. Development and Evaluation of a Robotic Vessel Positioning System for Semi-

Automatic Microvascular Anastomosis. International Conference on Robotics and Automation (ICRA), 2023.
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Questions?
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MagnetoSuture: Concept of Untethered Suture

► Tele-operated magnetic suture needle2► Concept: ventricular septal defect repair1

Patch

1. Image: http://childrens.memorialhermann.org/services/ventricular-septal-defects/
2. Lamar O. Mair, Xiaolong Liu, et al., "MagnetoSuture: Tetherless Manipulation of Suture Needles," in IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 2, pp. 206-215, May 2020

http://childrens.memorialhermann.org/services/ventricular-septal-defects/
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Research Problem

►Control mesoscale magnetic suture needles by using non-uniform 

magnetic field
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Method Overview

Needle Dynamic 

Model

Pose Feedback

Reference needle 

trajectory

PD

Needle Controller

Feedback Linearization

Executed 

needle pose

Current input I
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Experiment Setup and Needle Perception

Perception of  needle random movementHardware configuration



© 2024 Johns Hopkins University

Position Control using Discretized Trajectories

RMS (mm)

Square 1.6

Circle 2.7

Figure-8 2.1

Purse-string 1.5

Matthew Fan*, Xiaolong Liu*, Kamakshi Jain, Daniel Lerner, Lamar O. Mair, Irving N. Weinberg, Yancy Diaz-

Mercado, Axel Krieger, Towards Autonomous Control of Magnetic Suture Needles, IEEE/RSJ International 

Conference on Intelligent Robots and Systems, Las Vegas, 2020.
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Localization and Control in Surgical Environment

Will Pryor, Yotam Barnoy, Suraj Raval, Xiaolong Liu, Lamar Mair, Daniel Lerner, Onder Erin, Gregory D. Hager, Yancy Diaz-Mercado, 

Axel Krieger. Localization and Control of Magnetic Suture Needles in Cluttered Surgical Site with Blood and Tissue. IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS), 2021
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Magnetic Pulse  Actuated  Collisions  for  Tissue-penetrating  
Needle (MPACT-Needle)

Design Preliminary Tests
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22.7 Fold Increase in the Force Generation

© 2022 Johns Hopkins University
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Suturing in Agarose Gel with Gauze Mesh

Erin O, Liu X, Ge J, Opfermann J, Barnoy Y, Mair LO, Kang JU, Gensheimer W, Weinberg IN, Diaz-Mercado Y, Krieger A. 

Overcoming the Force Limitations of Magnetic Robotic Surgery: Magnetic Pulse Actuated Collisions for Tissue‐Penetrating‐Needle for 

Tetherless Interventions. Advanced Intelligent Systems. 2022 Apr 22:2200072.
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Questions?
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• Introduction

• Surgical resection is a primary 

treatment modality for many patients 

with head and neck squamous cell 

carcinoma.

• Problem

• Tumor delineation difficulty.

• No autonomy in robot-assisted 

surgeries.

• Solution

• A near-infrared fluorescent tumor 

marking strategy.

• An autonomous robot system for 

tumor resection.

Autonomous System for Tumor Resection (ASTR)

Ge J, Kam M, Opfermann JD, Saeidi H, Leonard S, Mady LJ, Schnermann MJ, Krieger A. Autonomous System for Tumor Resection 

(ASTR)-Dual-Arm Robotic Midline Partial Glossectomy. IEEE Robotics and Automation Letters (2023).
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ASTR - Dual-Arm Robotic Midline Partial Glossectomy
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45

ASTR - Dual-Arm Robotic Midline Partial Glossectomy
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Questions?
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Why learning?

Model based approach:
 Requires domain expertise
 One method, one task 
 Difficult to scale

 Predictable and more safe

Learning based approach:
 Only demonstrations required
 One method, many tasks
 Improves with more data

 black-box model – can be unsafe
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Surgical Diffusion Policy: Learning Autonomous Surgical 
Subtasks (Ongoing work)

https://surgical-robot-transformer.github.io/

Motivating question: Can we learn difficult surgical manipulation skills 

using a data driven approach?
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Approach

Diffusion / Transformer

Model
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Choosing the Right Action Representation Matters

Key idea: use tool-centric actions, which is robust to joint measurement errors
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Relative motion is more consistent
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Results

(12x speed)

18 / 20 success
(500 demos)

9 / 9 success
(250 demos)

10 / 10 success
(200 demos)
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Robustness test on animal tissues
Note: our model was never trained on animal tissues

(6x speed)

Chicken leg Pork loin
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• Task specific (often model based) autonomous robotic surgery has been demonstrated 
and could be translated to first in human testing.

• Large potential in learning based robotic solutions for solving procedure level and 
general surgical tasks.

• Learning based solutions require a large community effort including academic, industry, 
and funding agencies.

Conclusion
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The IMERSE Lab - https://imerse.lcsr.jhu.edu/

https://imerse.lcsr.jhu.edu/
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Thank You and Questions?

axel@jhu.edu
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