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« Motivation/Background
— Why do we need new ways of doing lateral skull base surgery

e Current Limitations

« Overview of our work in addressing these limitations
— Robotics
— Automated Image Segmentation
— Stereovision, Microscope based image navigation
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Temporal Bone and Skull Base Surgery
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Temporal Bone and Skull Base Surgery
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Why Do Need New Technologies in Ear e
and SkullBase? =

« High Degree of Technical Difficulty to Access
— Millimeter differences between success and failure
— Limits surgical options for skull base tumors

« Extensive training required
* Long Operative Times

 |njuries in the skull base result in significant impact to patient's
quality of life
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Why Do Need New
Technologies in Ear and
Skull Base?

3.5 yr. F presents with
osteosarcoma of temporal
bone

Failed chemotherapy

Inferior edge of tumor abuts
petrous carotid
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Why Do Need New
Technologies in Ear and
Skull Base?

* 42y F presents with
rapidly progressive mass
in temporal bone,
condyle and clivus

« H/O epithelioid
hemangioendothelioma

* Developing numbness
due to cervical instability

 Vocal weakness and
tongue weakness
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Why Do Need New Technologies in Ear and Skull Base?




Why Do Need New Technologies in Ear and Skull Base?

Shaving of Transverse crest Inferior {
vestibule - vestibular nerve

Dural incision

Superior
vestibular nerve

Bill’'s bar

Facial nerve

Air cells
Cochlear nerve
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Research Goals
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Robotics

¥

Semi-Autonomous Surgery of
the Skull Base
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What is Machine Learning?

* The study of
computer algorithms that improve

automatically through experience

— Uses "training data” to make predictions or
decisions without being explicitly
programmed to do so

* Deep Learning

— A subset of machine learning that uses
Neural Networks

November 10, 2021

Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

or any other living entity.

Machine Learning:
A technique by which a computer
can "learn" from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from

Deep Learning:
A technique to perform
machine learning

inspired by our brain's
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What is Computer Vision

« Computer vision is an
interdisciplinary scientific field
that deals with how computers
can gain high-level
understanding from digital B
Images or videos

\_‘\

» Attempts to understand and
automate tasks that the human
visual system can do
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What is Computer Vision

« Computer vision is an
interdisciplinary scientific field
that deals with how computers
can gain high-level
understanding from digital
Images or videos

» Attempts to understand and
automate tasks that the human =
visual system can do
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Semi-Autonomous vs. Autonomous Surgery

 Autonomous ~ “TESLA”

— System needs no input from operator » !
to perform task .

HiH]

« Semi-Autonomous ~ “LEXUS”

— System relies on operator to perform
task, but augments and improves
operator performance
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Why Semi-Autonomous?

— Takes advantage of a surgeon's
inherent knowledge and skKill

— Don’t have to program and design for
every eventuality




Why Semi-Autonomous?

Tesla on autopilot had steered driver

* Public Perception towards same barrier before fatal crash,
— Patients are not NTSB says
cO mfo rt a b I e W|th f u I Iy The man told his family about the problem prior to the fatal crash.
autonomous systems @ o v =
Another Tesla Autopilot Crash Has Wrecked A
NTSB Releases Report On 2018 M°‘f!‘?' 3 h,‘ Greece

In what's believed to be the first case of an active Autopilot crash on E
T~ K] P

Fatal Silicon Valley Tesla Autopilot . b
Crash

Brad Templeton Senior Contributor ® @
7 Transportation
I cover robocar technology & previously worked on Google's car team.
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Why Semi-Autonomous?

Public Perception

— Patients are not
comfortable with fully
autonomous systems

Intentions to Use Robotic Technologies in Surgery

Score

Absolute difference 0.40, 95% CI 0.15-0.66, p<0.001
I 1

Mean 3.90+1.35

Absolute difference 0.47, 95% CI
0.21-0.73, p<0.001
1

Mean 3.97+1.41

Mean 3.50+1.44

Surgical extenders

Semi-autonomous

Autonomous

50%

40%

30%

20%

10%

0%

"How much do you agree with this application of an Al in

Pre-operative Operative planning
interpretation of
images

surgery?"

Real-time alert of

potential
complications

Partially autonomous  Fully autonomous
surgery surgery

| W Strongly agree ™ Somewhat agree ™ Neither agree nor disagree

Somewhat disagree ™ Strongly disagree

Palmisciano P, Jamjoom AAB, Taylor D, Stoyanov D, Marcus HJ. Attitudes of Patients and Their Relatives Toward
Artificial Intelligence in Neurosurgery. World Neurosurg. 2020 Jun;138:e627-¢633. doi: 10.1016/j.wneu.2020.03.029.

Epub 2020 Mar 14. PMID: 32179185.
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...
Barriers to a Semi-Autonomous o
Surgical Platform
» Better Robot:

— Needs to work in Parallel with the Surgeon, allowing us to take advantage of
surgeon's skKill

» Better Image Segmentation:
— Need to automatically identify critical structures so the robot knows what to avoid

» Better Image Navigation

— Even best available systems are between 1-2mm accuracy in clinical setting
— Skull Base Surgery requires submillimeter accuracy

25




Cooperative Control vs Master/Slave Robots

« Master/Slave manipulators

— Robot holds and physically moves the
instruments; surgeon commands the robot
remotely — “DA VINCI”

« Cooperative Control manipulators

— Robot and surgeon hold instrument in
parallel, surgeon moves the instrument
while robot monitors and augments that
motion

November 10, 2021



Background- REMS

nnnnnnn

The Robotic ENT Microsurgery
System (REMS)

Cooperative control
Conventional instruments
« Custom adaptors
6 DOF
« Delta (X,Y,2)
« Roll/Tilt stages

 Unactuated tool rotation
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Virtual Fixtures

Forbidden region

".__. \
) |

onto a user's real perception

 Augmented sensory overlay |
of the environments ~— (4

(-
)

« Can great virtual, robotically
enforced “No go zones”

AS




e
Methods

e Commercially available temporal bone models
— Phacon (Leipzig, Germany)
— R temporal bone with accompanying CT

» 3 Planar virtual fixtures defined on CT
— Resulting volume between planes approximates cortical mastoidectomy

— Phacon/CT registered to REMS

 Computer Engineer with no prior knowledge of mastoidectomy
instructed to drill away all material within allowable working space

— Performed on 5 identical models

« 3rd generation research version of the technology

30
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REMS-Assisted Mastoidectomy &

OHNS HOPKINS

»,




-
ReS U |tS @ JOHNS HOPKINS

MEDICINE

e Virtual Fixtures 3D Reconstruction:
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Preplanned Volume

* Mean time to completion: 221 | o
+/- 35 seconds (3.6 min) X Trial 2
Trial 3

L B Trial 4
» Average Hausdorff Distance D Trial 5

~0.3mm
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Future Directions

Define What to Drill

Define What not to Drill

November 10, 2021
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Need for Automated Segmentation

 To allow a robot to use image navigational information
we need to be able to tell the robot anatomical
information about that image

November 10, 2021




Need for Automated Segmentation

« To make this clinically feasible, this process needs to
be automated

mastoidisegmentifacialin®

November 10, 2021




Development of an Automated Segmentation

Algorithm

Manual Segment 42 Temporal Bone CT
scans

Create Statistical Shape Models of the
structures of the temporal bone and Skull
Base to create an Average skull base

Use this average skull base as a template for
segmenting new CT scans

Overlay template onto new CT scan

Use deformation fields obtained from SSMs
to non-rigidly deform template to match new
CT scan

November 10, 2021 39
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Development of an Automated Segmentation
Algorithm

Manual Segment 42 Temporal Bone CT
scans

Create Statistical Shape Models of the
structures of the temporal bone and Skull
Base to create an Average skull base

Use this average skull base as a template for
segmenting new CT scans

Overlay template onto new CT scan

Use deformation fields obtained from SSMs
to non-rigidly deform template to match new
CT scan
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Development of an Automated Segmentation
Algorithm

Manual Segment 42 Temporal Bone CT
scans

Create Statistical Shape Models of the
structures of the temporal bone and Skull
Base to create an Average skull base

Use this average skull base as a template for
segmenting new CT scans

Overlay template onto new CT scan -

Use deformation fields obtained from SSMs . N
to non-rigidly deform template to match new M
CT scan )
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Bony Labyrinth SSM PCA

Principal Component 1 Principal Component 2 Principal Component 3



Development of an Automated Segmentation

Algorithm

Manual Segment 42 Temporal Bone CT
scans

Create Statistical Shape Models of the
structures of the temporal bone and Skull
Base to create an Average skull base

Use this average skull base as a template
for segmenting new CT scans

Overlay template onto new CT scan

Use deformation fields obtained from SSMs
to non-rigidly deform template to match new
CT scan

November 10, 2021 43

nnnnnnnn



Development of an Automated Segmentation
Algorithm

Manual Segment 42 Temporal Bone CT
scans

Create Statistical Shape Models of the
structures of the temporal bone and Skull
Base to create an average skull base Atlas

Use this average skull base as a template for
segmenting new CT scans

Overlay template onto new CT scan

Use deformation fields obtained from SSMs
to non-rigidly deform template to match new
CT scan
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Development of an Automated Segmentation
Algorithm

Manual Segment 42 Temporal Bone CT scans R
Create Statistical Shape Models of the NoWde 8 08 hE
structures of the temporal bone and Skull

Base to create an Average skull base

Use this average skull base as a template for
segmenting new CT scans

Overlay template onto new CT scan

Use deformation fields obtained from SSMs
to non-rigidly deform template to match
new CT scan
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Development of an Automated Segmentation
Algorithm

Before Registration After Registration
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Development of an Automated Segmentation

Algorithm

Atlas Member

Atlas image

\ [ AtlasSet | (7 |

Defines Modes of

/ Variation in Each
Segmented
Anatomical ’
Structure -

Patient Scan
\ Aset= {Al,...Ai} ) \—/

!

INITIAL IMAGE to ATLAS SET REGISTRATION

1

ITERATIVE, NON-RIGID DEFORMATIONS to

: : MATCH ATLAS SURFACE TO IMAGE
wal Labyrinth Dura / STRUCTURES

November 10, 2021

Repeat with output as new target

Average

Figure 2.1: Template creation pipeline: all input images are deformably registered
to one target image, which is then deformed by the mean of the deformation fields

resulting from the registrations. The colors in the deformation fields represent the
direction of the deformation vectors, whereas the intensity of the colors indicates the
magnitude of the vectors, Deforming the target image by the mean deformation field
takes the target image towards the mean of the input images. This process is iterated
with the output image as the new target image. Individual variation from the initial
target image decreases with every iteration, and the resulting output moves closer to
the mean of the input set of images
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Segmentation Evaluation — Dice and Hausdorff Distances

Max Hausdorff Distances
Segment 138 152 147 146 144 143 142
Malleus (mm) 0.4660 1.2128 0.6253 0.4120 0.5791 0.6943 0.5234
Incus (mm) 1.1278 1.2071 0.8756 0.9324 0.6661 0.5100 0.7730

1.8123 0.7766 0.7888 0.9018 0.9267 0.5508 0.8674
D.5664 1.0930 2.0624 2.4743 2.1653 1.4024 0.8003
.6530 2.6300 4.5432 2.8950 7.3989 4.4492 2.6733

Vestibule + Cochlea (m
Facial Nerve (m

Chorda Tympani (m . W6473 18.4033  21.2440 2.9788 19.2804 4.6203 5.5602
Mean Hausdorff Distances

Segment 138 142 143 144 146 147 152

Malleus ( 142 0.1082 0.1073 0.1000 0.0942 0.1082 0.1118

Incus ( 884 0.1147 0.1004 0.1159 0.1346 0.1359 0.1154

Stapes ( 322 0.1874 0.1555 0.2660 0.1623 0.1416 0.1506

Vestibule + Cochlea ( 158 0.1184 0.1353 0.1969 0.2405 0.3196 0.1008

Facial Nerve (|
Chorda Tympani (

202 0.5074 0.7860 1.4298 0.5708 1.2277 0.3845
1232 0.9625 0.8941 0.4473 0.7252 0.3874 2.7049

Dice
Segment 138 142 143 144 146 147 152
Malle . ¥ 0.8242 0.8550 0.8423 0.8424 0.8414 0.8307 0.8135
Incu . . 0.7835 0.8722 0.8497 0.8424 0.8608 0.8552 0.8561
Stapes . ¥ 0.0659 0.4203 0.4107 0.3016 0.4270 0.3563 0.4904

Vestibule + Cochlea
Facial Nerve
Chorda Tympani

0.8651 0.8827 0.8754 0.8645 0.8364 0.7106 0.8979
0.6323 0.5786 0.5209 0.4907 0.5829 0.3738 0.6799
0.0006 0.0650 0.0991 0.4907 0.0028 0.0360 0.0000



Future Directions

* Develop deep learning models to improve on
segmentation accuracy and speed
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Limitations of Current Image Navigation
Systems

 EM and Optical Trackers

— Rely on fiducial markers, bone anchored fiducials or
surface scanning

— All inhibit the surgical workflow
— Prone to errors (clinically reliable to 1-2mm)

— Often work well at the surface but lose fidelity as you
proceed deeper in the skull

 No currently available method to update and
improve reqistration intraoperatively as bone is
removed

November 10, 2021




Can you teach a microscope to detect and

register anatomy?

 Traditional Microscopes

— Allow only monovision video
recording through single eye
pieces

* New fully digital microscopes

— Present digital image from two
eye pieces

— Allows for stereoscopic video

November 10, 2021
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Can you teach a microscope to detect and

register anatomy?

o Stereovision Video

— Allows us to take advantage of
epipolar geometry

— Creates the potential to determine image

depth and real world 3-D location of a
point on an image

— A deep learning network could use this
to correlate the stereoscopic surgical
image to the preoperative image

November 10, 2021

Left view
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Can you teach a microscope to detect and
register anatomy?

* Previously we have shown you can do a similar
calculation with an endoscope

November 10, 2021 53 @ JOHNS HOPKINS
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Reconstruction of Sinus Anatomy from Monoscope Endoscope Video

Reconstruction after Reconstruction before
pose optimization pose optimization

Video frame

Xingtong Liu, et al., “Self-supervised Dense 3D Reconstruction from Monocular Endoscopic Video”, MICCAI 2019

Copyright © 2020 R. H. Taylor \r ‘Zﬂ)



Deformable Registration to Statistical Model

N

fshape =
likelihood of
deformation in W(s)

Statistical shape model
with shape parameters, s

Current transform, F,
current deformed shape W(s)

I N

fmaten; = Initial shape, W(s,)

likelihood of

Fx; matching y; € W(s) Initial transform, F,

b

Observed features X
with noise model

X = {x;}

Correspondence Phase

Find matches between
FX and ¥(s) that
maximize

fmatch

»

= (1_[ fmatchi) -fshape

Registration Phase

Find F and s that
maximize

fmatch,deformable

A. Sinha, S. D. Billings, A. Reiter, X. Liu, M. Ishii, G. D. Hager, and
R. H. Taylor, "The deformable most-likely-point paradigm", Medical

Image Analysis, vol. 55-, pp. 148-164, July, 2019.

Copyright © 2020 R. H. Taylor

GD4MLOP lteration: 1

Final registration
and deformed shape

I mesh
#® points
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Stereoscopic Microscope Navigation Work-
flow

Pre-operative

Stereoscopic Image Input  &# Stereo Depth

Depth Image =~

P From Microscope | i Estimation CT scan
L [ g

*(3:4 :, ,-‘\. .. ";I, f?jd -y n q

RS Y t L ¥

o ,,\' 'F ’ \' P

MRS A

R -0 A

..ﬂ ‘7 D :” i

Registration
of Point in
Deformation
Model to
Patient
Imaging

Camera Pose
Estimation

Stereoscopic
Microscope

Estimated Deformed
Temporal Bone Shape
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Develop synthetic training set
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Using Stereovideo we can determine depth
estimations




Incorporating this with training data and calibration
data we can reconstruct 3D shapes from video




This data can then be merged with CT imaging to
register the microscope to the patient
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Direct generalization 1.152 mm 6946

Self supervision 1.147 mm 6928
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Next Steps: Incorporate Instrument Detection
and Tracking

November 10, 2021 64 @ JOHNS HOPKINS
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Next Steps: Incorporate Instrument Detection
and Tracking

Annotated Frame _ Instrument Path

November 10, 2021 65 @ JOHNS HOPKINS
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Computational
Sensing + Robotics

Russ Taylor, PhD Mathias Unberath, PhD ~ Deepa Galaiya, MD
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Questions?
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