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Outline

• Motivation/Background 
– Why do we need new ways of doing lateral skull base surgery

• Current Limitations

• Overview of our work in addressing these limitations
– Robotics
– Automated Image Segmentation
– Stereovision, Microscope based image navigation
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Temporal Bone and Skull Base Surgery
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Why Do Need New Technologies in Ear 
and Skull Base?

• High Degree of Technical Difficulty to Access
– Millimeter differences between success and failure
– Limits surgical options for skull base tumors

• Extensive training required
• Long Operative Times

• Injuries in the skull base result in significant impact to patient's 
quality of life
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Why Do Need New 
Technologies in Ear and 
Skull Base?
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• 3.5 yr. F presents with 
osteosarcoma of temporal 
bone

• Failed chemotherapy 

• Inferior edge of tumor abuts 
petrous carotid 
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Why Do Need New 
Technologies in Ear and 
Skull Base?

• 42y F presents with 
rapidly progressive mass 
in temporal bone, 
condyle and clivus

• H/O epithelioid 
hemangioendothelioma

• Developing numbness 
due to cervical instability

• Vocal weakness and 
tongue weakness
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Research Goals
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What is Machine Learning?

• The study of 
computer algorithms that improve 
automatically through experience
– Uses "training data” to make predictions or 

decisions without being explicitly 
programmed to do so

• Deep Learning 
– A subset of machine learning that uses 

Neural Networks
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What is Computer Vision

• Computer vision is an 
interdisciplinary scientific field 
that deals with how computers 
can gain high-level 
understanding from digital 
images or videos

• Attempts to understand and 
automate tasks that the human 
visual system can do
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Semi-Autonomous vs. Autonomous Surgery

• Autonomous ~ “TESLA”
– System needs no input from operator 

to perform task

• Semi-Autonomous ~ “LEXUS”
– System relies on operator to perform 

task, but augments and improves 
operator performance
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Why Semi-Autonomous?

• MUCH MUCH MUCH EASIER!!!!!!
– Takes advantage of a surgeon's 

inherent knowledge and skill
– Don’t have to program and design for 

every eventuality
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Why Semi-Autonomous?

• Public Perception
– Patients are not 

comfortable with fully 
autonomous systems
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Barriers to a Semi-Autonomous 
Surgical Platform
• Better Robot:

– Needs to work in Parallel with the Surgeon, allowing us to take advantage of 
surgeon's skill

• Better Image Segmentation:
– Need to automatically identify critical structures so the robot knows what to avoid

• Better Image Navigation
– Even best available systems are between 1-2mm accuracy in clinical setting
– Skull Base Surgery requires submillimeter accuracy
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Cooperative Control vs Master/Slave Robots

• Master/Slave manipulators 
– Robot holds and physically moves the 

instruments; surgeon commands the robot 
remotely – “DA VINCI”

• Cooperative Control manipulators
– Robot and surgeon hold instrument in 

parallel, surgeon moves the instrument 
while robot monitors and augments that 
motion
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Background- REMS 
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• The Robotic ENT Microsurgery 
System (REMS)

• Cooperative control

• Conventional instruments

• Custom adaptors 

• 6 DOF

• Delta (X,Y,Z)

• Roll/Tilt stages

• Unactuated tool rotation



REMS
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Virtual Fixtures
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• Augmented sensory overlay 
onto a user's real perception 
of the environments

• Can great virtual, robotically 
enforced “No go zones”



Methods
• Commercially available temporal bone models

– Phacon (Leipzig, Germany)
– R temporal bone with accompanying CT

• 3 Planar virtual fixtures defined on CT
– Resulting volume between planes approximates cortical mastoidectomy 
– Phacon/CT registered to REMS

• Computer Engineer with no prior knowledge of mastoidectomy 
instructed to drill away all material within allowable working space
– Performed on 5 identical models 

• 3rd generation research version of the technology
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Methods
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REMS-Assisted Mastoidectomy
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Results
• Virtual Fixtures 3D Reconstruction:
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Results
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• Mean time to completion: 221 
+/- 35 seconds (3.6 min) 

• Average Hausdorff Distance 
~0.3mm



Future Directions
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Define What to Drill Define What not to Drill



Need for Automated Segmentation

• To allow a robot to use image navigational information 
we need to be able to tell the robot anatomical 
information about that image
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Need for Automated Segmentation

• To make this clinically feasible, this process needs to 
be automated
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Development of an Automated Segmentation 
Algorithm

1. Manual Segment 42 Temporal Bone CT 
scans

2. Create Statistical Shape Models of the 
structures of the temporal bone and Skull 
Base to create an Average skull base

3. Use this average skull base as a template for 
segmenting new CT scans

4. Overlay template onto new CT scan
5. Use deformation fields obtained from SSMs 

to non-rigidly deform template to match new 
CT scan
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Bony Labyrinth SSM PCA

Principal Component 1 Principal Component 2 Principal Component 3
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Development of an Automated Segmentation 
Algorithm
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Future Directions

• Develop deep learning models to improve on 
segmentation accuracy and speed
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Limitations of Current Image Navigation 
Systems

• EM and Optical Trackers
– Rely on fiducial markers, bone anchored fiducials or 

surface scanning
– All inhibit the surgical workflow 
– Prone to errors (clinically reliable to 1-2mm)
– Often work well at the surface but lose fidelity as you 

proceed deeper in the skull

• No currently available method to update and 
improve registration intraoperatively as bone is 
removed
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Can you teach a microscope to detect and 
register anatomy?

• Traditional Microscopes
– Allow only monovision video 

recording through single eye 
pieces

• New fully digital microscopes
– Present digital image from two 

eye pieces
– Allows for stereoscopic video
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Can you teach a microscope to detect and 
register anatomy?

• Stereovision Video
– Allows us to take advantage of 

epipolar geometry

– Creates the potential to determine image 
depth and real world 3-D location of a 
point on an image

– A deep learning network could use this 
to correlate the stereoscopic surgical 
image to the preoperative image
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Can you teach a microscope to detect and 
register anatomy?

• Previously we have shown you can do a similar 
calculation with an endoscope
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Laboratory for Computational Sensing and RoboticsCopyright ©  2020 R. H. Taylor

Reconstruction of Sinus Anatomy from Monoscope Endoscope Video

Xingtong Liu,  et al., “Self-supervised Dense 3D Reconstruction from Monocular Endoscopic Video”, MICCAI 2019



Laboratory for Computational Sensing and RoboticsCopyright ©  2020 R. H. Taylor
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Stereoscopic Microscope Navigation Work-
flow
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Develop synthetic training set:
Teach the microscope what to expect to see
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Develop synthetic training set
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Develop synthetic training set



Using Stereovideo we can determine depth 
estimations



Incorporating this with training data and calibration 
data we can reconstruct 3D shapes from video



This data can then be merged with CT imaging to 
register the microscope to the patient



Inlier RMSE # of Correspondence

Direct generalization 1.152 mm 6946

Self supervision 1.147 mm 6928



Next Steps: Incorporate Instrument Detection 
and Tracking
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Questions?

11/10/21 67


