Finding point-pairs

- Given an **a**, find a corresponding **b** on the surface.
- One approach would be to search every possible triangle or surface point and then take the closest point.
- The key is to find a more efficient way to do this

Suppose surface is represented by dense cloud of points

3D airway reconstruction during nasal endoscopic procedures without external tracking devices

Xingtong Liu

Monoscopic Endoscope Video

Dense Point Cloud Reconstruction

Suppose surface is represented by dense cloud of points

How do we deal with the large number of possible matches?

Find Closest Point from Dense Cloud

- Basic approach is to divide space into regions. Suppose that we have one point b_k* that is a possible match for a point a_k. The distance Δ*=|| b_k* a_k|| obviously acts as an <u>upper</u> bound on the distance of the closest point to the surface.
- Given a region R containing many possible points b_j, if we can compute a <u>lower</u> bound Δ_L on the distance from a to <u>any</u> point in R, then we need only consider points inside R if Δ_L < Δ*.

Given a match, is there anything closer?

Divide cloud into cells

Can exclude everything outside circle

Find Closest Point from Dense Cloud

- There are many ways to implement this idea
 - Simply partitioning space into many buckets
 - Octrees, KD trees, covariance trees, etc.

Approaches to closest triangle finding

- 1. (Simplest) Construct linear list of triangles and search sequentially for closest triangle to each point.
- 2. (Only slightly harder) Construct bounding spheres or bounding boxes around each triangle and use these to reduce the number of careful checks required.
- 3. (Faster if have lots of points) Construct hierarchical data structure to speed search.
- 4. (Better but harder) Rotate each level of the tree to align with data.

FindClosestPoint(a,[p,q,r])

Many approaches. One is to solve the system

$$\mathbf{a} - \mathbf{p} \approx \lambda(\mathbf{q} - \mathbf{p}) + \mu(\mathbf{r} - \mathbf{p})$$

in a least squares sense for λ and μ . Then compute

$$\mathbf{c} = \mathbf{p} + \lambda(\mathbf{q} - \mathbf{p}) + \mu(\mathbf{r} - \mathbf{p})$$

If $\lambda \ge 0, \mu \ge 0, \lambda + \mu \le 1$, then **c** lies within the triangle and is the closest point. Otherwise, you need to find a point on the border of the triangle **I a**

Hint: For efficiency, work out the least squares problem explicitly for λ , μ

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Finding closest point on triangle

Region	<u>Closest point</u>		
<u>λ<0</u>	ProjectOnSegment(c,r,p)		
<u>µ<0</u>	ProjectOnSegment(c,p,q)		
<u>λ+μ>1</u>	ProjectOnSegment(c,q,r)		

ProjectOnSegment(c,p,q)

$$\lambda = \frac{(\mathbf{c} - \mathbf{p}) \bullet (\mathbf{q} - \mathbf{p})}{(\mathbf{q} - \mathbf{p}) \bullet (\mathbf{q} - \mathbf{p})}$$

$$\lambda^{(seg)} = Max(0, Min(\lambda, 1))$$

$$\mathbf{c}^{\star} = \mathbf{p} + \lambda^{(seg)} \times (\mathbf{q} - \mathbf{p})$$

Simple Search with Bounding Boxes

// Triangle *i* has corners $[\vec{\mathbf{p}}_i, \vec{\mathbf{q}}_i, \vec{\mathbf{r}}_i]$

Bounding box lower = $\vec{L}_i = [L_{xi}, L_{yi}, L_{zi}]^T$; upper = $\vec{U}_i = [U_{xi}, U_{yi}, U_{zi}]^T$ bound = ∞ for i = 1 to N do { if $(L_{v_i} - bound \le a_v \le U_{v_i} + bound)$ and $(L_{v_i} - bound \le a_v \le U_{v_i} + bound)$ and $(L_{z_i} - bound \le a_z \le U_{z_i} + bound)$ then { $\vec{\mathbf{h}} = \text{FindClosestPoint}(\vec{\mathbf{a}}, [\vec{\mathbf{p}}_i, \vec{\mathbf{q}}_i, \vec{\mathbf{r}}_i]);$ if $\|\vec{\mathbf{h}} - \vec{\mathbf{a}}\| < bound$ then $\{ \vec{\mathbf{c}} = \vec{\mathbf{h}}; bound = \|\vec{\mathbf{h}} - \vec{\mathbf{a}}\|; \};$ }; };

Bounding Sphere

Suppose you have a point $\vec{\mathbf{p}}$ and are trying to find the closest triangle $(\vec{\mathbf{a}}_k, \vec{\mathbf{b}}_k, \vec{\mathbf{c}}_k)$ to $\vec{\mathbf{p}}$. If you have already found a triangle $(\vec{\mathbf{a}}_j, \vec{\mathbf{b}}_j, \vec{\mathbf{c}}_j)$ with a point $\vec{\mathbf{r}}_j$ on it, when do you need to check carefully for some triangle *k*?

Answer: if $\vec{\mathbf{q}}_k$ is the center of a sphere of radius ρ_k enclosing $(\vec{\mathbf{a}}_k, \vec{\mathbf{b}}_k, \vec{\mathbf{c}}_k)$, then you only need to check carefully if $\|\vec{\mathbf{p}} - \vec{\mathbf{q}}_k\| - \rho_k < \|\vec{\mathbf{p}} - r_j\|$.

Bounding Sphere

Assume edge (\vec{a}, \vec{b}) is the longest. Then the center \vec{q} of the sphere will obey

$$(\vec{\mathbf{b}} - \vec{\mathbf{q}}) \cdot (\vec{\mathbf{b}} - \vec{\mathbf{q}}) = (\vec{\mathbf{a}} - \vec{\mathbf{q}}) \cdot (\vec{\mathbf{a}} - \vec{\mathbf{q}})$$
$$(\vec{\mathbf{c}} - \vec{\mathbf{q}}) \cdot (\vec{\mathbf{c}} - \vec{\mathbf{q}}) \le (\vec{\mathbf{a}} - \vec{\mathbf{q}}) \cdot (\vec{\mathbf{a}} - \vec{\mathbf{q}})$$
$$(\vec{\mathbf{b}} - \vec{\mathbf{a}}) \times (\vec{\mathbf{c}} - \vec{\mathbf{a}}) \cdot (\vec{\mathbf{q}} - \vec{\mathbf{a}}) = 0$$

Simple approach: Try $\vec{\mathbf{q}} = (\vec{\mathbf{a}} + \vec{\mathbf{b}}) / 2$. If inequality holds, then done. Else solve the system to get $\vec{\mathbf{q}}$ (next page). The radius $\rho = \|\vec{\mathbf{q}} - \vec{\mathbf{a}}\|$.

Simple Search with Bounding Spheres

// Triangle *i* has corners $[\vec{\mathbf{p}}_i, \vec{\mathbf{q}}_i, \vec{\mathbf{r}}_i]$

// Surrounding sphere i has radius ρ_i center $\vec{\mathbf{q}}_i$ bound = ∞ ; for i=1 to N do

{ if
$$\|\vec{\mathbf{q}}_{i} - \vec{\mathbf{a}}\| - \rho_{i} \leq bound$$
 then
{ $\vec{\mathbf{h}} = FindClosestPoint(\vec{\mathbf{a}}, [\vec{\mathbf{p}}_{i}, \vec{\mathbf{q}}_{i}, \vec{\mathbf{r}}_{i}]);$
if $\|\vec{\mathbf{h}} - \vec{\mathbf{a}}\| < bound$ then
{ $\vec{\mathbf{c}} = \vec{\mathbf{h}}; \ bound = \|\vec{\mathbf{h}} - \vec{\mathbf{a}}\|;$ };
};

8

Bounding Sphere

Assume edge (\vec{a}, \vec{b}) is the longest side of triangle. Compute $\vec{f} = (\vec{a} + \vec{b})/2$.

Define

$$\vec{\mathbf{u}} = \vec{\mathbf{a}} - \vec{\mathbf{f}}; \vec{\mathbf{v}} = \vec{\mathbf{c}} - \vec{\mathbf{f}}$$

 $\vec{\mathbf{d}} = (\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{u}}$

Then the sphere center \vec{q} lies somewhere along the line

$$\vec{\mathbf{q}} = \vec{\mathbf{f}} + \lambda \vec{\mathbf{d}}$$
with $(\lambda \vec{\mathbf{d}} - \vec{\mathbf{v}})^2 \leq (\lambda \vec{\mathbf{d}} - \vec{\mathbf{u}})^2$. Simplifying gives us
$$\lambda \geq \frac{\vec{\mathbf{v}}^2 - \vec{\mathbf{u}}^2}{2\vec{\mathbf{d}} \cdot (\vec{\mathbf{v}} - \vec{\mathbf{u}})} = \gamma$$
If $\gamma \leq 0$, then just pick $\lambda = 0$. Else pick $\lambda = \gamma$.

Hierarchical cellular decompositions

Hierarchical cellular decompositions

class BoundingSphere {

public:

Vec3 Center;

double Radius;

Thing* Object;

// Coordinates of center
// radius of sphere
// some reference to the thing
// bounded

};

class BoundingBoxTreeNode {

Vec3 Center; // splitting point Vec3 UB; // corners of box Vec3 LB; int HaveSubtrees; int nSpheres; double MaxRadius; // maximum radius of sphere in box BoundingBoxTreeNode* SubTrees[2][2][2]; **BoundingSphere**** Spheres; BoundingBoxTreeNode(BoundingSphere** BS, int nS); **ConstructSubtrees()**; void FindClosestPoint(Vec3 v, double& bound, Vec3& closest); **};**

BoundingBoxTreeNode(BoundingSphere** BS, int nS)

{ Spheres = BS; nSpheres = nS;

Center = Centroid(Spheres, nSpheres);

- // This will be the splitting point
- // Centroid is efficient to compute
- // But other choices are possible

MaxRadius = FindMaxRadius(Spheres,nSpheres); UB = FindMaxCoordinates(Spheres,nSpheres); LB = FindMinCoordinates(Spheres,nSpheres); ConstructSubtrees();

};

ConstructSubtrees()

{ if (nSpheres<= minCount || length(UB-LB)<=minDiag)</pre>

```
{ HaveSubtrees=0; return; };
```

HaveSubtrees = 1;

int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp;

// number of spheres in each subtree

```
SplitSort(Center, Spheres, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp);
Subtrees[0][0][0] = BoundingBoxTree(Spheres[0],nnn);
Subtrees[0][1][0] = BoundingBoxTree(Spheres[nnn],npn);
Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn],npp);
```

}

void BoundingBoxTreeNode::FindClosestPoint

```
(Vec3 v, double& bound, Vec3& closest)
```

```
{ double dist = bound + MaxRadius;
```

```
if (v.x > UB.x+dist) return; if (v.y > UB.y+dist) return;
```

```
....; if (v.z < LB.z-dist) return;
```

```
if (HaveSubtrees)
```

{ Subtrees[0][0][0].FindClosestPoint(v,bound,closest);

```
Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
```

```
}
else
```

```
for (int i=0;i<nSpheres;I++)
```

```
UpdateClosest(Spheres[i],v,bound,closest);
```

};


```
void UpdateClosest(BoundingSphere* S,
	Vec3 v, double& bound, Vec3& closest)
{ double dist = v-S->Center;;
	if (dist - S->Radius > bound) return;
	Vec3 cp = ClosestPointTo(*S->Object,v);
	dist = LengthOf(cp-v);
	if (dist<bound) { bound = dist; closest=cp;};
};
```


class BoundingBoxTreeNode {

```
Vec3 Center; // splitting point
Vec3 UB;
         // corners of box
Vec3 LB;
int HaveSubtrees;
int nThings;
BoundingBoxTreeNode* SubTrees[2][2][2];
Thing** Things;
BoundingBoxTreeNode(Thing** BS, int nS);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
```


Properties of "Things"

Class Thing { public:

vec3 SortPoint();

// returns a point that can be used to sort the object vec3 ClosestPointTo(vec3 p);

// returns point in this thing closest to p

[vec3,vec3] EnlargeBounds(frame F,vec3 LB, vec3 UB);

// Given frame F, and corners LB and UB of bounding box

// around some other things, returns a the corners of a bounding

// box that includes this Thing2 as well,

// where Thing2=F.Inverse()*this thing

[vec3,vec3] BoundingBox(F);

{ return EnlargeBounds($F, [\infty, \infty, \infty], [-\infty, -\infty, -\infty]$);};

int MayBeInBounds(Frame F, vec3 LB, vec3 UB); // returns 1 if any part of this F.Inverse()*this thing could be // in the bounding box with corners LB and UB

}

Triangle Things

```
Class Triangle : public Thing
{vec3 Corners[3]; // vertices of triangle
 vec3 SortPoint() { return Mean(Corners);}; // or use Corner[0]
 [vec3,vec3] EnlargeBounds(frame F,vec3 LB, vec3 UB)
        { vec3 FiC[3]=F.inverse()*Corners;
          for (int I=0;I<3;I++)
                  { LB.x = min(LB.x,FiC[i].x); UB.x = max(UB.x,FiC[i].x);
                   LB.y = min(LB.y,FiC[i].y); UB.y = max(UB.y,FiC[i].y);
                   LB.z = min(LB.y,FiC[i].z); UB.z = max(UB.y,FiC[i].z);
                  };
         return [LB, UB];
         };
 [vec3,vec3] BoundingBox(F)
         { return EnlargeBounds(F, [\infty, \infty, \infty], [-\infty, -\infty, -\infty]);};
 int MayBeInBounds(Frame F, vec3 LB, vec3 UB)
         { vec3 FiC[3]=F.inverse()*Corners;
          for (int k=0;k<3; k++) if (InBounds(FiC[k],LB,UB)) return 1;
          return 0;}
```


ConstructSubtrees()

```
{ if (nThings<= minCount || length(UB-LB)<=minDiag)</pre>
```

```
{ HaveSubtrees=0; return; };
```

HaveSubtrees = 1;

int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp;

// number of things in each subtree

SplitSort(Center, Things, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp); Subtrees[0][0][0] = BoundingBoxTree(Things[0],nnn); Subtrees[0][1][0] = BoundingBoxTree(Things[nnn],npn); Subtrees[0][1][1] = BoundingBoxTree(Things[nnn+npn],npp);

}

// If desired, may be modified to simultaneously find a good
// value for SplittingPoint (e.g., median)

}

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Engineering Research Center for Computer Integrated Surgical Systems and Technology

void BoundingBoxTreeNode::FindClosestPoint

(Vec3 v, double& bound, Vec3& closest)

{ if ((v.x > UB.x+bound) || (v.x<LB.x-bound)) return;</pre>

```
if ((v.y > UB.y+bound) || (v.y<LB.y-bound)) return;
```

if ((v.z > UB.z+bound) || (v.z<LB.z-bound)) return;

```
if (HaveSubtrees)
```

{ Subtrees[0][0][0].FindClosestPoint(v,bound,closest);

```
.
Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
}
```

else

```
for (int i=0;i<nThings;I++)
```

UpdateClosest(Things[i],v,bound,closest);

};


```
void UpdateClosest(Thing* Thing,
	Vec3 v, double& bound, Vec3& closest)
{ Vec3 cp = Thing->ClosestPointTo(v);
	dist = LengthOf(cp-v);
	if (dist<bound) { bound = dist; closest=cp;};
};
```


Engineering Research Center for Computer Integrated Surgical Systems and Technology

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

8

Searching KD Tree of Bounded Things

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

Possible pathology with KD trees and Octrees

Poor alignment of shape with directions of the tree causes inefficient search. In extreme cases can become quasi-linear time

Solution: Covariance Trees*

* Referred to by my former student Seth Billings as Principal Direction Trees

Covariance Trees

Covariance Trees

Covariance Trees

Covariance Tree Construction

Χ

Define a local node coordinate system $\mathbf{F}_{node} = [\mathbf{R}, \vec{\mathbf{p}}]$ and sort the surface points according to the sign of the *x* component of $\vec{\mathbf{b}}_i = \mathbf{R}^{-1} \cdot \vec{\mathbf{u}}_i$. Compute bounding box $\vec{\mathbf{b}}^{\min} \leq \mathbf{R}^{-1} \cdot \vec{\mathbf{u}}_i \leq \vec{\mathbf{b}}^{\max}$ Assign these points to "left" and "right" subtree nodes.

V

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing Cov Tree of Objects

class CovTreeNode {

Frame F; // splitting point Vec3 UB; // corners of box Vec3 LB; int HaveSubtrees; int nThings; CovTreeNode* SubTrees[2]; Thing** Things; CovTreeNode(Thing** Ts, int nT); **ConstructSubtrees()**; void FindClosestPoint(Vec3 v, double& bound, Vec3& closest); **};**


```
CovTreeNode(Thing** Ts, int nT)
{ Things = Ts; nThings = nT;
    F = ComputeCovFrame(Things,nThings);
    [UB,LB] = FindBoundingBox(F,Things,nThings);
    ConstructSubtrees();
    };
```

```
[vec3 UB,vec3 LB]=FindBoundingBox(F,Things,nThings)
{ UB = LB = F.inverse()*(Things[0]->SortPoint());
  for (int k=0;k<nThings;k++)
      { [LB,UB] = Things[k]->EnlargeBounds(F,LB,UB);
      };
  return [UB,LB];
};
```



```
Frame F = FindCovFrame(vec3* Ps, int nP)
{ vec3 C = Centroid(Ps,nP);
   Matrix A = 0;
   for (i=0;i<nP;i++) A+=OuterProduct(Ps[i],Ps[i]);
    R = CorrespondingRotationMatrix(A); // see notes
    return Frame(R,C);
   };</pre>
```



```
ConstructSubtrees()
{ if (nThings<= minCount || length(UB-LB)<=minDiag)
        { HaveSubtrees=0; return; };
    HaveSubtrees = 1;
    int nSplit;
    nSplit = SplitSort(F,things);
    Subtrees[0] = CovarianceTreeNode(Things[0],nSplit);
    Subtrees[1] = CovarianceTreeNode(Things[nSplit],nThings-nSplit);
}
```


Int nSplit = SplitSort(Frame F, Thing** Ts,int nT)

- { // find an integer nSplit and reorder Things(...) so that
 - // F.inverse()*(Thing[k]->SortPoint()).x <0 if and only if k<nSplit</pre>
 - // This can be done "in place" by suitable exchanges.

return nSplit;

}

Covariance tree search

Given

Copyright Russell Taylor, 2010-2021

- node with associated \mathbf{F}_{node} and surface sample points $\vec{\mathbf{s}}_{i}$.
- sample point \vec{a} , previous closest point \vec{c} , $dist = \|\vec{a} \vec{c}\|$

Transform \vec{a} into local coordinate system $\vec{b} = \mathbf{F}_{node}^{-1}\vec{a}$

Check to see if the point $\vec{\mathbf{b}}$ is inside an enlarged bounding box $\vec{\mathbf{b}}^{\min} - dist \le \vec{\mathbf{b}} \le \vec{\mathbf{b}}^{\max} + dist$. If not, then quit.

Otherwise, if no subnodes, do exhaustive search for closest. Otherwise, search left and right subtrees.

8

Searching a Covariance Tree of Things

void CovarianceTreeNode::FindClosestPoint

(Vec3 v, double& bound, Vec3& closest)

- { vLocal=F.Inverse()*v; // transform v to local coordinate system
 - if (vLocal.x > UB.x+bound) return;
 - if (vLocal.y > UB.y+bound) return;
 - // similar checks on remaining bounds go here ;
 - if (vLocal.z < LB.z-bound) return;</pre>
 - if (HaveSubtrees)

```
{ Subtrees[0].FindClosestPoint(v,bound,closest);
```

```
Subtrees[1].FindClosestPoint(v,bound,closest);
```

ر else

Searching a Covariance Tree of Things

```
void UpdateClosest(Thing* T, Vec3 v, double& bound, Vec3& closest)
{ // here can include filter if have a bounding sphere to check
    Vec3 cp = T->ClosestPointTo(v);
    dist = LengthOf(cp-v);
    if (dist<bound) { bound = dist; closest=cp;};
};</pre>
```

8

- One method is simply to place a bounding sphere around each triangle, and then use the method discussed previously
- However, this may be inconvenient if the mesh is deforming

 $\hat{\mathbf{V}}_1$

v

- Select one point on the triangle to use as the "sort" point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use <u>all</u> vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.

 $\hat{\mathbf{V}}_1$

v

- Select one point on the triangle to use as the "sort" point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use <u>all</u> vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.

Select one point on the triangle to use as the "sort" point for selection of left/right subtrees.

- Good choices are centroid of triangle or just one of the vertices.
- However use <u>all</u> vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.

- Select one point on the triangle to
 use as the "sort" point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use <u>all</u> vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.

An Alternative to Bounding Boxes: Bounding Ellipsoids

 $\vec{\mathbf{p}}_{c} = \frac{1}{N} \sum_{N} \vec{\mathbf{v}}_{i}$ $\vec{\mathbf{u}}_{i} = \vec{\mathbf{v}}_{i} - \vec{\mathbf{p}}_{c}$ $\mathbf{A} = \sum_{i} \vec{\mathbf{u}}_{i} \vec{\mathbf{u}}_{i}^{T} = \mathbf{Q} \Lambda \mathbf{Q}^{T}$ $\Lambda = diag(\vec{\lambda})$ $\rho^{2} = \max_{i} \vec{\mathbf{u}}_{i}^{T} \mathbf{A} \vec{\mathbf{u}}_{i}$

Given a search point \vec{d} and previous closest distance δ , the ellipsiod may have a closer point if

Compute

$$(\vec{\mathbf{d}} - \vec{\mathbf{p}}_{c})^{\mathsf{T}} \mathbf{A} (\vec{\mathbf{d}} - \vec{\mathbf{p}}_{c}) < \rho^{2} + (\delta \max_{k} \lambda_{k})^{2}$$

Note: can probably get a tighter bound, but this will work

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Simple spatial sort

