Finding point-pairs

• Given an a, find a corresponding b on the surface.
• One approach would be to search every possible triangle or surface point and then take the closest point.
• The key is to find a more efficient way to do this
Suppose surface is represented by dense cloud of points
3D airway reconstruction during nasal endoscopic procedures without external tracking devices

Monoscopic Endoscope Video

Dense Point Cloud Reconstruction
Suppose surface is represented by dense cloud of points

How do we deal with the large number of possible matches?
Find Closest Point from Dense Cloud

• Basic approach is to divide space into regions. Suppose that we have one point \(b_k^* \) that is a possible match for a point \(a_k \). The distance \(\Delta^* = \| b_k^* - a_k \| \) obviously acts as an upper bound on the distance of the closest point to the surface.

• Given a region \(R \) containing many possible points \(b_j \), if we can compute a lower bound \(\Delta_L \) on the distance from \(a \) to any point in \(R \), then we need only consider points inside \(R \) if \(\Delta_L < \Delta^* \).
Given a match, is there anything closer?
Divide cloud into cells
Can exclude everything outside circle
Find Closest Point from Dense Cloud

• There are many ways to implement this idea
 – Simply partitioning space into many buckets
 – Octrees, KD trees, covariance trees, etc.
Approaches to closest triangle finding

1. (Simplest) Construct linear list of triangles and search sequentially for closest triangle to each point.

2. (Only slightly harder) Construct bounding spheres or bounding boxes around each triangle and use these to reduce the number of careful checks required.

3. (Faster if have lots of points) Construct hierarchical data structure to speed search.

4. (Better but harder) Rotate each level of the tree to align with data.
FindClosestPoint(a,[p,q,r])

Many approaches. One is to solve the system

\[a - p \approx \lambda (q - p) + \mu (r - p) \]

in a least squares sense for \(\lambda \) and \(\mu \). Then compute

\[c = p + \lambda (q - p) + \mu (r - p) \]

If \(\lambda \geq 0, \mu \geq 0, \lambda + \mu \leq 1 \), then \(c \) lies within the triangle and is the closest point. Otherwise, you need to find a point on the border of the triangle.

Hint: For efficiency, work out the least squares problem explicitly for \(\lambda, \mu \).
Finding closest point on triangle

<table>
<thead>
<tr>
<th>Region</th>
<th>Closest point</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda<0$</td>
<td>$\text{ProjectOnSegment}(c,r,p)$</td>
</tr>
<tr>
<td>$\mu<0$</td>
<td>$\text{ProjectOnSegment}(c,p,q)$</td>
</tr>
<tr>
<td>$\lambda+\mu>1$</td>
<td>$\text{ProjectOnSegment}(c,q,r)$</td>
</tr>
</tbody>
</table>
ProjectOnSegment\((c,p,q)\)

\[\lambda = \frac{(c - p) \cdot (q - p)}{(q - p) \cdot (q - p)}\]

\[\lambda^{(seg)} = \text{Max}(0, \text{Min}(\lambda, 1))\]

\[c^* = p + \lambda^{(seg)} \times (q - p)\]
Simple Search with Bounding Boxes

// Triangle i has corners $[\bar{p}_i, \bar{q}_i, \bar{r}_i]$

// Bounding box lower $= \bar{L}_i = [L_{xi}, L_{yi}, L_{zi}]^T$; upper $= \bar{U}_i = [U_{xi}, U_{yi}, U_{zi}]^T$

$\text{bound} = \infty$

for $i = 1$ to N do

{ if $(L_{xi} - \text{bound} \leq a_x \leq U_{xi} + \text{bound})$ and $(L_{yi} - \text{bound} \leq a_y \leq U_{yi} + \text{bound})$

and $(L_{zi} - \text{bound} \leq a_z \leq U_{zi} + \text{bound})$ then

{ $\tilde{\text{h}} = \text{FindClosestPoint}(\bar{a}, [\bar{p}_i, \bar{q}_i, \bar{r}_i])$;

if $\|\tilde{\text{h}} - \bar{a}\| < \text{bound}$ then

{ $\tilde{\text{c}} = \tilde{\text{h}}$; $\text{bound} = \|\tilde{\text{h}} - \bar{a}\|$;

};

};
Bounding Sphere

Suppose you have a point \(\vec{p} \) and are trying to find the closest triangle \((\vec{a}_k, \vec{b}_k, \vec{c}_k)\) to \(\vec{p} \). If you have already found a triangle \((\vec{a}_j, \vec{b}_j, \vec{c}_j)\) with a point \(\vec{r}_j \) on it, when do you need to check carefully for some triangle \(k \)?

Answer: if \(\vec{q}_k \) is the center of a sphere of radius \(\rho_k \) enclosing \((\vec{a}_k, \vec{b}_k, \vec{c}_k)\), then you only need to check carefully if

\[
\|\vec{p} - \vec{q}_k\| - \rho_k < \|\vec{p} - \vec{r}_j\|.
\]
Bounding Sphere

Assume edge \((\vec{a}, \vec{b})\) is the longest.
Then the center \(\vec{q}\) of the sphere will obey
\[
(\vec{b} - \vec{q}) \cdot (\vec{b} - \vec{q}) = (\vec{a} - \vec{q}) \cdot (\vec{a} - \vec{q})
\]
\[
(\vec{c} - \vec{q}) \cdot (\vec{c} - \vec{q}) \leq (\vec{a} - \vec{q}) \cdot (\vec{a} - \vec{q})
\]
\[
(\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) \cdot (\vec{q} - \vec{a}) = 0
\]

Simple approach: Try \(\vec{q} = (\vec{a} + \vec{b}) / 2\).
If inequality holds, then done.
Else solve the system to get \(\vec{q}\) (next page).
The radius \(\rho = \|\vec{q} - \vec{a}\|\).
Simple Search with Bounding Spheres

// Triangle i has corners \([\vec{p}_i, \vec{q}_i, \vec{r}_i]\)
// Surrounding sphere i has radius \(\rho_i \) center \(\vec{q}_i \)

\[
\text{bound} = \infty;
\]

for i=1 to N do

\{
if \[\| \vec{q}_i - \vec{a} \| - \rho_i \leq \text{bound} \] then

\{
\vec{h} = \text{FindClosestPoint}(\vec{a}, [\vec{p}_i, \vec{q}_i, \vec{r}_i]);
if \[\| \vec{h} - \vec{a} \| < \text{bound} \] then

\{
\vec{c} = \vec{h}; \quad \text{bound} = \| \vec{h} - \vec{a} \| ; \};
\};
\};
Bounding Sphere

Assume edge (\vec{a}, \vec{b}) is the longest side of triangle.
Compute $\vec{f} = (\vec{a} + \vec{b}) / 2$.
Define
\[
\vec{u} = \vec{a} - \vec{f}; \quad \vec{v} = \vec{c} - \vec{f}
\]
\[
\vec{d} = (\vec{u} \times \vec{v}) \times \vec{u}
\]
Then the sphere center \vec{q} lies somewhere along the line
\[
\vec{q} = \vec{f} + \lambda \vec{d}
\]
with $(\lambda \vec{d} - \vec{v})^2 \leq (\lambda \vec{d} - \vec{u})^2$. Simplifying gives us
\[
\lambda \geq \frac{\vec{v}^2 - \vec{u}^2}{2 \vec{d} \cdot (\vec{v} - \vec{u})} = \gamma
\]
If $\gamma \leq 0$, then just pick $\lambda = 0$. Else pick $\lambda = \gamma$.
Hierarchical cellular decompositions
Hierarchical cellular decompositions
Constructing tree of bounding spheres

class BoundingSphere {
 public:
 Vec3 Center; // Coordinates of center
 double Radius; // radius of sphere
 Thing* Object; // some reference to the thing
 // bounded

 };
Constructing octree of bounding spheres

class BoundingBoxTreeNode {
 Vec3 Center; // splitting point
 Vec3 UB; // corners of box
 Vec3 LB;
 int HaveSubtrees;
 int nSpheres;
 double MaxRadius; // maximum radius of sphere in box
 BoundingBoxTreeNode* SubTrees[2][2][2];
 BoundingSphere** Spheres;
 :
 :

 BoundingBoxTreeNode(BoundingSphere** BS, int nS);
 ConstructSubtrees();
 void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
Constructing octree of bounding spheres

BoundingBoxTreeNode(BoundingSphere** BS, int nS) {
 Spheres = BS; nSpheres = nS;
 Center = Centroid(Spheres, nSpheres);
 // This will be the splitting point
 // Centroid is efficient to compute
 // But other choices are possible
 MaxRadius = FindMaxRadius(Spheres, nSpheres);
 UB = FindMaxCoordinates(Spheres, nSpheres);
 LB = FindMinCoordinates(Spheres, nSpheres);
 ConstructSubtrees();
};
Constructing octree of bounding spheres

ConstructSubtrees()
{
 if (nSpheres <= minCount || length(UB-LB) <= minDiag)
 {
 HaveSubtrees = 0; return;
 }

 HaveSubtrees = 1;
 int nnn, npn, npp, nnp, pnn, pnp, ppp, pnp;
 // number of spheres in each subtree
 SplitSort(Center, Spheres, nnn, npn, npp, nnp, pnn, pnp, ppp, pnp);
 Subtrees[0][0][0] = BoundingBoxTree(Spheres[0], nnn);
 Subtrees[0][1][0] = BoundingBoxTree(Spheres[nnn], npn);
 Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn], npp);
 Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn], pnn);
 Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn], ppp);
 Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn], pnp);
}
Constructing octree of bounding spheres

SplitSort(Vec3 SplittingPoint, BoundingSphere** Spheres, int& nnn, int& npn, ... ,int& pnp)
{
 // reorder Spheres(…) into eight buckets according to
 // comparison of coordinates of Sphere(k)->Center
 // with coordinates of splitting point. E.g., first bucket has
 // Sphere(k)->Center.x < SplittingPoint.x
 // Sphere(k)->Center.y < SplittingPoint.y
 // Sphere(k)->Center.z < SplittingPoint.z
 // This can be done “in place” by suitable exchanges.
 // Set nnn = number of spheres with all coordinates less than
 // splitting point, etc.
}
Searching an octree of bounding spheres
Searching an octree of bounding spheres
Searching an octree of bounding spheres

```cpp
void BoundingBoxTreeNode::FindClosestPoint
    (Vec3 v, double& bound, Vec3& closest)
{
    double dist = bound + MaxRadius;
    if (v.x > UB.x+dist) return;  if (v.y > UB.y+dist) return;
    .... ; if (v.z < LB.z-dist) return;
    if (HaveSubtrees)
    {
        Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
        :
        Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
    }
    else
    { for (int i=0;i<nSpheres;i++)
        UpdateClosest(Spheres[i],v,bound,closest);
    }
};
```
Searching an octree of bounding spheres

```c
void UpdateClosest(BoundingSphere* S, 
                   Vec3 v, double& bound, Vec3& closest)
{
    double dist = v-S->Center;;
    if (dist - S->Radius > bound) return;
    Vec3 cp = ClosestPointTo(*S->Object,v);
    dist = LengthOf(cp-v);
    if (dist<bound) { bound = dist; closest=cp;};
};
```
Constructing octree of bounded things

class BoundingBoxTreeNode {
 Vec3 Center; // splitting point
 Vec3 UB; // corners of box
 Vec3 LB;
 int HaveSubtrees;
 int nThings;
 BoundingBoxTreeNode* SubTrees[2][2][2];
 Thing** Things;
 :
 :
 :
 BoundingBoxTreeNode(Thing** BS, int nS);
 ConstructSubtrees();
 void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
Properties of “Things”

Class Thing
{
 public:
 :
 vec3 SortPoint();
 // returns a point that can be used to sort the object
 vec3 ClosestPointTo(vec3 p);
 // returns point in this thing closest to p
 [vec3,vec3] EnlargeBounds(frame F, vec3 LB, vec3 UB);
 // Given frame F, and corners LB and UB of bounding box
 // around some other things, returns a the corners of a bounding
 // box that includes this Thing2 as well,
 // where Thing2=F.Inverse()*this thing
 [vec3,vec3] BoundingBox(F);
 { return EnlargeBounds(F,[∞, ∞, ∞],[-∞,−∞,−∞]);};

 int MayBeInBounds(Frame F, vec3 LB, vec3 UB);
 // returns 1 if any part of this F.Inverse()*this thing could be
 // in the bounding box with corners LB and UB
}
Triangle Things

Class Triangle : public Thing
{vec3 Corners[3]; // vertices of triangle :
 vec3 SortPoint() { return Mean(Corners);}; // or use Corner[0]
[vec3,vec3] EnlargeBounds(frame F, vec3 LB, vec3 UB)
 { vec3 FiC[3]=F.inverse()*Corners;
 for (int I=0;I<3;I++)
 { LB.x = min(LB.x,FiC[I].x); UB.x = max(UB.x,FiC[I].x);
 LB.y = min(LB.y,FiC[I].y); UB.y = max(UB.y,FiC[I].y);
 LB.z = min(LB.z,FiC[I].z); UB.z = max(UB.z,FiC[I].z);
 }
 return [LB, UB];
 }
[vec3,vec3] BoundingBox(F)
 { return EnlargeBounds(F, [∞, ∞, ∞],[−∞,−∞,−∞]);}
int MayBeInBounds(Frame F, vec3 LB, vec3 UB)
 { vec3 FiC[3]=F.inverse()*Corners;
 for (int k=0;k<3; k++) if (InBounds(FiC[k],LB,UB)) return 1;
 return 0;}
}
Constructing octree of bounded things

BoundingBoxTreeNode(Thing** BS, int nS)
{
 Things = BS; nThings = nS;
 UB = FindMaxCoordinates(Things,nThings);
 LB = FindMinCoordinates(Things,nThings);
 Center = LB+(UB-LB)/2.0; // Splitting point
 // Not necessarily the best
 // Alternatives would be centroid or
 // the median of the SortPoint()’s.

 ConstructSubtrees();
};
Constructing octree of bounded things

ConstructSubtrees()
{}
if (nThings <= minCount || length(UB-LB) <= minDiag)
{
 HaveSubtrees = 0; return;
};
HaveSubtrees = 1;
int nnn, npn, npp, nnp, pnn, ppn, ppp, pnp;
 // number of things in each subtree
SplitSort(Center, Things, nnn, npn, npp, nnp, pnn, ppn, ppp, pnp);
Subtrees[0][0][0] = BoundingBoxTree(Things[0], nnn);
Subtrees[0][1][0] = BoundingBoxTree(Things[nnn], npn);
Subtrees[0][1][1] = BoundingBoxTree(Things[nnn+npn], npp);
...
Constructing octree of bounded things

SplitSort(Vec3& SplittingPoint, BoundingThing** Things, int& nnn, int& npn, … ,int& pnp)
{
 // reorder Spheres(…) into eight buckets according to
 // comparison of coordinates of Thing(k)->SortPoint()
 // with coordinates of splitting point. E.g., first bucket has
 // Thing(k)->Center.x < SplittingPoint.x
 // Thing(k)->Center.y < SplittingPoint.y
 // Thing(k)->Center.z < SplittingPoint.z
 // This can be done “in place” by suitable exchanges.
 // Set nnn = number of spheres with all coordinates less than
 // splitting point, etc.

 // If desired, may be modified to simultaneously find a good
 // value for SplittingPoint (e.g., median)
}

Searching octree of bounded things

```cpp
void BoundingBoxTreeNode::FindClosestPoint
    (Vec3 v, double& bound, Vec3& closest)
{
    if ((v.x > UB.x+bound) || (v.x<LB.x-bound)) return;
    if ((v.y > UB.y+bound) || (v.y<LB.y-bound)) return;
    if ((v.z > UB.z+bound) || (v.z<LB.z-bound)) return;
    if (HaveSubtrees)
    {
        Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
        :
        Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
    }
    else
    {
        for (int i=0;i<nThings;I++)
            UpdateClosest(Things[i],v,bound,closest);
    }
};
```
Searching octree of bounded things

```c
void UpdateClosest(Thing* Thing,
                   Vec3 v, double& bound, Vec3& closest)
{
    Vec3 cp = Thing->ClosestPointTo(v);
    dist = LengthOf(cp-v);
    if (dist<bound) { bound = dist; closest=cp;};
}
```
Constructing KD tree of bounded things
Searching KD Tree of Bounded Things
Possible pathology with KD trees and Octrees

Poor alignment of shape with directions of the tree causes inefficient search. In extreme cases can become quasi-linear time.
Solution: Covariance Trees*

* Referred to by my former student Seth Billings as Principal Direction Trees
Covariance Trees
Covariance Trees
Covariance Tree Construction

Given surface sample of N points $\{\vec{v}_i\}$

Compute centroid $\vec{p} = \frac{1}{N} \sum_{i=1}^{N} \vec{v}_i$

Compute residual vectors $\vec{u}_i = \vec{v}_i - \vec{p}$
Define a local node coordinate system $F_{node} = [R, \tilde{p}]$ and sort the surface points according to the sign of the x component of $\vec{b}_i = R^{-1} \cdot \vec{u}_i$. Compute bounding box $\vec{b}^{\min} \leq R^{-1} \cdot \vec{u}_i \leq \vec{b}^{\max}$.

Assign these points to "left" and "right" subtree nodes.
Covariance Tree Construction

\[\mathbf{A} = \sum_i \mathbf{u}_i \mathbf{u}_i^T \]

Form outer product matrix \(\mathbf{A} = \sum_i \mathbf{u}_i \mathbf{u}_i^T \)

Compute eigenvalues \(\{ \lambda_1, \lambda_2, \lambda_3 \} \) and eigenvectors \(\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3] \) of \(\mathbf{A} \)

Find a rotation \(\mathbf{R} \) such that \(\mathbf{R}_x \) is the eigenvector corresponding to the largest eigenvalue.

(Depending on algorithm used, \(\mathbf{Q} \) will be a rotation matrix, so all you may have to do is rotate \(\mathbf{Q} \))
Constructing Cov Tree of Objects

class CovTreeNode {
 Frame F; // splitting point
 Vec3 UB; // corners of box
 Vec3 LB;
 int HaveSubtrees;
 int nThings;
 CovTreeNode* SubTrees[2];
 Thing** Things;
 CovTreeNode(Thing** Ts, int nT);
 ConstructSubtrees();
 void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
Constructing Cov Tree of Things

CovTreeNode(Thing** Ts, int nT)
{
 Things = Ts; nThings = nT;
 F = ComputeCovFrame(Things,nThings);
 [UB,LB] = FindBoundingBox(F,Things,nThings);
 ConstructSubtrees();
}

[vec3 UB,vec3 LB]=FindBoundingBox(F,Things,nThings)
{
 UB = LB = F.inverse()*(Things[0]->SortPoint());
 for (int k=0;k<nThings;k++)
 {
 [LB,UB] = Things[k]->EnlargeBounds(F,LB,UB);
 }
 return [UB,LB];
}
Constructing Cov Tree of Things

Frame F = FindCovFrame(Thing** Ts, int nT)
{}
 [vec3 Points, int nP] = ExtractPoints(Ts, nT);
 // may extract nT sort points or perhaps
 // all corner points if things are triangles
 return FindCovFrame(Points, nP);
};

Frame F = FindCovFrame(vec3* Ps, int nP)
{}
 vec3 C = Centroid(Ps, nP);
 Matrix A = 0;
 for (i=0; i<nP; i++) A += OuterProduct(Ps[i], Ps[i]);
 R = CorrespondingRotationMatrix(A); // see notes
 return Frame(R, C);
};
Constructing Cov Tree of Things

ConstructSubtrees()
{
 if (nThings <= minCount || length(UB-LB) <= minDiag)
 {
 HaveSubtrees = 0; return;
 }

 HaveSubtrees = 1;
 int nSplit;
 nSplit = SplitSort(F, things);
 Subtrees[0] = CovarianceTreeNode(Things[0], nSplit);
 Subtrees[1] = CovarianceTreeNode(Things[nSplit], nThings - nSplit);
}
Int nSplit = SplitSort(Frame F, Thing** Ts, int nT)
{
 // find an integer nSplit and reorder Things(...) so that
 // F.inverse()(Thing[k]->SortPoint()).x < 0 if and only if k<nSplit
 // This can be done “in place” by suitable exchanges.
 return nSplit;
}
Covariance tree search

Given

- node with associated F_{node} and surface sample points \tilde{s}_i.
- sample point \tilde{a}, previous closest point \tilde{c}, $dist = \|\tilde{a} - \tilde{c}\|

Transform \tilde{a} into local coordinate system $\tilde{b} = F_{node}^{-1}\tilde{a}$

Check to see if the point \tilde{b} is inside an enlarged bounding box $\tilde{b}_{min} - dist \leq \tilde{b} \leq \tilde{b}_{max} + dist$. If not, then quit.
Otherwise, if no subnodes, do exhaustive search for closest.
Otherwise, search left and right subtrees.
Searching a Covariance Tree of Things

```cpp
void CovarianceTreeNode::FindClosestPoint
    (Vec3 v, double& bound, Vec3& closest)
{
    vLocal = F.Inverse() * v; // transform v to local coordinate system
    if (vLocal.x > UB.x + bound) return;
    if (vLocal.y > UB.y + bound) return;
    // similar checks on remaining bounds go here .... ;
    if (vLocal.z < LB.z - bound) return;
    if (HaveSubtrees)
        { Subtrees[0].FindClosestPoint(v, bound, closest);
          Subtrees[1].FindClosestPoint(v, bound, closest);
        }
    else
        for (int i = 0; i < nThings; i++)
            UpdateClosest(Things[i], v, bound, closest);
};
```
Searching a Covariance Tree of Things

```c
void UpdateClosest(Thing* T, Vec3 v, double& bound, Vec3& closest) {
    // here can include filter if have a bounding sphere to check
    Vec3 cp = T->ClosestPointTo(v);
    double dist = LengthOf(cp-v);
    if (dist<bound) { bound = dist; closest=cp; }
}
```
Covariance Trees for Triangle Meshes

- One method is simply to place a bounding sphere around each triangle, and then use the method discussed previously.
- However, this may be inconvenient if the mesh is deforming.
Covariance Trees for Triangle Meshes

Observe that every point \vec{v} on a triangle $[\vec{v}_1, \vec{v}_2, \vec{v}_3]$ can be expressed as a convex linear combination

$$\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3$$

with $\lambda_1 + \lambda_2 + \lambda_3 = 1$. Therefore, if $[\vec{v}_1, \vec{v}_2, \vec{v}_3]$ are in some bounding box, then \vec{v} will also be in that bounding box.
Covariance Trees for Triangle Meshes

- Select one point on the triangle to use as the “sort” point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use all vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.
Covariance Trees for Triangle Meshes

- Select one point on the triangle to use as the “sort” point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use all vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.
Covariance Trees for Triangle Meshes

- Select one point on the triangle to use as the “sort” point for selection of left/right subtrees.
 - Good choices are centroid of triangle or just one of the vertices.
 - However use all vertices of each triangle in determining the size of bounding boxes.
 - Note this would work equally well for octrees.
Covariance Trees for Triangle Meshes

- Select one point on the triangle to use as the “sort” point for selection of left/right subtrees.
- Good choices are centroid of triangle or just one of the vertices.
- However use all vertices of each triangle in determining the size of bounding boxes.
- Note this would work equally well for octrees.
An Alternative to Bounding Boxes: Bounding Ellipsoids

Compute

\[
\begin{align*}
\bar{p}_c &= \frac{1}{N} \sum_N \bar{v}_i \\
\bar{u}_i &= \bar{v}_i - \bar{p}_c \\
A &= \sum_i \bar{u}_i \bar{u}_i^T = Q \Lambda Q^T \\
\Lambda &= \text{diag}(\bar{\lambda}) \\
\rho^2 &= \max_i \bar{u}_i^T A \bar{u}_i
\end{align*}
\]

Given a search point \(\bar{d} \) and previous closest distance \(\delta \), the ellipsoid may have a closer point if

\[
(\bar{d} - \bar{p}_c)^T A(\bar{d} - \bar{p}_c) < \rho^2 + (\delta \max_k \lambda_k)^2
\]

Note: can probably get a tighter bound, but this will work
Simple spatial sort

Index based on coordinates

Point list