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Finding point-pairs

• Given an a, find a corresponding b on the 
surface.

• One approach would be to search every 
possible triangle or surface point and then 
take the closest point.

• The key is to find a more efficient way to do 
this 
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Suppose surface is represented by dense 
cloud of points

   
!
ak

   
!
bi{ }

?
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3D airway reconstruction during nasal endoscopic 
procedures without external tracking devices

Xingtong 
Liu

Monoscopic Endoscope Video Dense Point Cloud Reconstruction
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Suppose surface is represented by dense 
cloud of points

   
!
ak

   
!
bi{ }

?

How do we deal with 
the large number of 
possible matches?
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Find Closest Point from Dense Cloud

• Basic approach is to divide space into 
regions.  Suppose that we have one point bk* 
that is a possible match for a point ak. The 
distance Δ*=|| bk* - ak|| obviously acts as an 
upper bound on the distance of the closest 
point to the surface.

• Given a region R containing many possible 
points bj, if we can compute a lower bound ΔL
on the distance from a to any point in R, then 
we need only consider points inside R if ΔL < 
Δ*.
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Given a match, is there anything closer?

!
ka

!
*
kb
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Divide cloud into cells

!
ka
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Can exclude everything outside circle

X X X
X X X
X X X

X X X X
X X X X X

!
ka

!
*
kb
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Find Closest Point from Dense Cloud

• There are many ways to implement this idea
– Simply partitioning space into many 

buckets
– Octrees, KD trees, covariance trees, etc.

• Basic idea also works with surface meshes,
but need to find closest point on a triangle.
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Approaches to closest triangle finding

1. (Simplest) Construct linear list of triangles 
and search sequentially for closest triangle 
to each point.

2. (Only slightly harder)  Construct bounding 
spheres or bounding boxes around each 
triangle and use these to reduce the number 
of careful checks required.

3. (Faster if have lots of points) Construct 
hierarchical data structure to speed search.

4. (Better but harder) Rotate each level of the 
tree to align with data.

10



6

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

FindClosestPoint(a,[p,q,r])
Many approaches.  One is to solve the system

( ) ( )
in a least squares sense for  and .  Then compute

( ) ( )
If 0, 0, 1, then  lies within the triangle 
and is the closest po

λ µ
λ µ

λ µ
λ µ λ µ

− ≈ − + −

= + − + −
≥ ≥ + ≤

a p q p r p

c p q p r p
c

int.  Otherwise, you need to find a 
point on the border of the triangle

p

q

r

a

c

Hint: For efficiency, work out 
the least squares problem 
explicitly for λ, μ
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Finding closest point on triangle

p

q

r

Region Closest point
λ<0 ProjectOnSegment(c,r,p)
μ<0 ProjectOnSegment(c,p,q)
λ+μ>1 ProjectOnSegment(c,q,r)

λ<0

μ<0

λ+μ>1
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ProjectOnSegment(c,p,q)

λ = (c −p)• (q−p)
(q−p)• (q−p)

λ (seg ) =Max(0,Min(λ,1))

c* = p + λ (seg ) × (q−p)

p
q

c

c*
 λ

   1−λ
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Simple Search with Bounding Boxes

    

//  Triangle i  has corners [
!
p

i
,
!
q

i
,
!
r

i
] 

//   Bounding box lower = 
!
L

i
= [L

xi
,L

yi
,L

zi
]T ;  upper = 

!
U

i
= [U

xi
,U

yi
,U

zi
]T

bound = ∞

for i = 1 to N   do

{  if  L
xi
− bound ≤ a

x
≤ U

xi
+ bound( )and L

yi
− bound ≤ a

y
≤ U

yi
+ bound( )

                                                     and L
zi
− bound ≤ a

z
≤ U

zi
+ bound( ) then

       {  
!
h = FindClosestPoint(

!
a,[
!
p

i
,
!
q

i
,
!
r

i
]);

          if 
!
h −
!
a < bound  then

               { 
!
c =
!
h;  bound =

!
h −
!
a ;};

        };

};
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Bounding Sphere

a

b

c

q

    

Suppose you have a point !p and are trying to find
the closest triangle (!a k ,

!
bk ,!ck ) to !p.  If you have

already found a triangle (!a j ,
!
b j ,
!c j ) with a point !rj

on it, when do you need to check carefully for 
some triangle k ?

Answer: if  !qk  is the center of a sphere of

radius ρk  enclosing (!a k ,
!
bk ,!ck ),  then

you only need to check carefully if
!p − !qk − ρk <

!p − rj .
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Bounding Sphere

a

b

c

q

   

Assume edge (!a,
!
b) is the longest.

Then the center !q of the sphere will obey
!
b − !q( ) ⋅ !b − !q( ) = !a − !q( ) ⋅ !a − !q( )
!c − !q( ) ⋅ !c − !q( ) ≤ !a − !q( ) ⋅ !a − !q( )
!
b − !a( ) × !c − !a( ) ⋅ !q − !a( ) = 0

Simple approach:  Try !q = !a +
!
b( ) / 2.

If inequality holds, then done.  
Else solve the system to get !q (next page). 

The radius ρ = !q − !a .

16
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Bounding Sphere

   

Assume edge (!a,
!
b) is the longest side of triangle.

Compute 
!
f = !a +

!
b( ) / 2.

Define 
         !u = !a −

!
f ; !v = !c −

!
f

        
!
d = (!u × !v)× !u

Then the sphere center !q lies somewhere along the line 
       !q =

!
f + λ

!
d

with   (λ
!
d − !v)2 ≤ (λ

!
d − !u)2.  Simplifying gives us

       λ ≥
!v2 − !u2

2
!
d• !v − !u( ) = γ

If γ ≤ 0, then just pick λ=0.  Else pick λ=γ .
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Simple Search with Bounding Spheres

    

/ /  Triangle i  has corners [
!
pi ,
!
qi ,
!
ri ] 

//  Surrounding sphere i has radius ρi  center 
!
qi

bound = ∞;   
for i=1 to N  do

{  if  
!
qi −
!
a − ρi ≤ bound  then

       {  
!
h = FindClosestPoint(

!
a,[
!
pi ,
!
qi ,
!
ri ]);

          if 
!
h−
!
a < bound  then

               { 
!
c =
!
h;  bound =

!
h−
!
a ; };

        };
};
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Hierarchical cellular decompositions 
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Hierarchical cellular decompositions 
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Constructing tree of bounding spheres

class BoundingSphere {

public:

Vec3 Center; // Coordinates of center

double Radius; // radius of sphere

Thing* Object; // some reference to the thing

// bounded

};
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Constructing octree of bounding 
spheres

class BoundingBoxTreeNode {

Vec3 Center;             // splitting point
Vec3 UB; //  corners of box 
Vec3 LB;
int HaveSubtrees;
int nSpheres;
double MaxRadius; // maximum radius of sphere in box
BoundingBoxTreeNode* SubTrees[2][2][2];
BoundingSphere** Spheres;

:
:

BoundingBoxTreeNode(BoundingSphere** BS, int nS);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};

22



12

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounding 
spheres

BoundingBoxTreeNode(BoundingSphere** BS, int nS)
{   Spheres = BS; nSpheres = nS;

Center = Centroid(Spheres, nSpheres);
// This will be the splitting point
//  Centroid is efficient to compute
//   But other choices are possible

MaxRadius = FindMaxRadius(Spheres,nSpheres);
UB = FindMaxCoordinates(Spheres,nSpheres);
LB = FindMinCoordinates(Spheres,nSpheres);
ConstructSubtrees();
};
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Constructing octree of bounding 
spheres

ConstructSubtrees()
{  if (nSpheres<= minCount || length(UB-LB)<=minDiag) 

{ HaveSubtrees=0; return; };
HaveSubtrees = 1;
int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp; 

// number of spheres in each subtree
SplitSort(Center, Spheres, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp);
Subtrees[0][0][0] = BoundingBoxTree(Spheres[0],nnn);
Subtrees[0][1][0] = BoundingBoxTree(Spheres[nnn],npn);
Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn],npp);

:
:

}

24
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Constructing octree of bounding 
spheres

SplitSort(Vec3 SplittingPoint, BoundingSphere** Spheres, 
int& nnn, int& npn, … ,int& pnp)

{  // reorder Spheres(…) into eight buckets according to               
// comparison of coordinates of Sphere(k)->Center 
// with coordinates of splitting point.  E.g., first bucket has
//        Sphere(k)->Center.x < SplittingPoint.x
//        Sphere(k)->Center.y < SplittingPoint.y
// Sphere(k)->Center.z < SplittingPoint.z
// This can be done “in place” by suitable exchanges.
// Set nnn = number of spheres with all coordinates less than
// splitting point, etc.

}
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Searching an octree of bounding 
spheres

p!

jr
!

26



14

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching an octree of bounding 
spheres

p!

jr
!
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Searching an octree of bounding 
spheres

void BoundingBoxTreeNode::FindClosestPoint
(Vec3 v, double& bound, Vec3& closest)

{  double dist = bound + MaxRadius;
if (v.x > UB.x+dist) return;  if (v.y > UB.y+dist) return;

…. ;  if (v.z < LB.z-dist) return;
if (HaveSubtrees) 

{ Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
:

Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
}

else 
for (int i=0;i<nSpheres;I++) 

UpdateClosest(Spheres[i],v,bound,closest);

};

28
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Searching an octree of bounding 
spheres

void UpdateClosest(BoundingSphere* S,
Vec3 v, double& bound, Vec3& closest)

{  double dist = v-S->Center;;
if (dist - S->Radius > bound) return;
Vec3 cp  = ClosestPointTo(*S->Object,v);
dist = LengthOf(cp-v);
if (dist<bound) { bound = dist; closest=cp;};

};
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p!

?
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p!

X

?
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p!

X ?

X
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p!

X ?

X
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p!

X
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p!

X

X X

?
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p!

X

X X ?

X
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p!

X

X X

X

?
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p!
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p!

X

X X

X
X

X
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p!

X
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p!
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p!

X
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p!

X

X X

X
XX

X

XX
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Constructing octree of bounded things

44
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Constructing octree of bounded things
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Constructing octree of bounded things

46
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Constructing octree of bounded things

class BoundingBoxTreeNode {

Vec3 Center;             // splitting point
Vec3 UB; //  corners of box 
Vec3 LB;
int HaveSubtrees;
int nThings;
BoundingBoxTreeNode* SubTrees[2][2][2];
Thing** Things;

:
:

BoundingBoxTreeNode(Thing** BS, int nS);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
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Class Thing
{ public:

:
vec3 SortPoint();  

// returns a point that can be used to sort the object
vec3 ClosestPointTo(vec3 p);

// returns point in this thing closest to p 
[vec3,vec3] EnlargeBounds(frame F,vec3 LB, vec3 UB);

// Given frame F, and corners LB and UB of bounding box 
// around some other things, returns a the corners of a bounding
// box that includes this Thing2 as well, 
// where Thing2=F.Inverse()*this thing

[vec3,vec3] BoundingBox(F); 
{ return EnlargeBounds(F,[∞, ∞, ∞],[-∞,-∞,-∞]);};

int MayBeInBounds(Frame F, vec3 LB, vec3 UB);
// returns 1 if any part of this F.Inverse()*this thing could be 
// in the bounding box with corners LB and UB

}

Properties of “Things”

48
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Class Triangle : public Thing
{vec3 Corners[3];  // vertices of triangle

:
vec3 SortPoint() { return Mean(Corners);}; // or use Corner[0]
[vec3,vec3] EnlargeBounds(frame F,vec3 LB, vec3 UB)

{ vec3 FiC[3]=F.inverse()*Corners;
for (int I=0;I<3;I++) 

{ LB.x = min(LB.x,FiC[i].x); UB.x = max(UB.x,FiC[i].x);
LB.y = min(LB.y,FiC[i].y); UB.y = max(UB.y,FiC[i].y);
LB.z = min(LB.y,FiC[i].z); UB.z = max(UB.y,FiC[i].z);

};
return [LB, UB];
};

[vec3,vec3] BoundingBox(F) 
{ return EnlargeBounds(F,[∞, ∞, ∞],[-∞,-∞,-∞]);};

int MayBeInBounds(Frame F, vec3 LB, vec3 UB)
{ vec3 FiC[3]=F.inverse()*Corners;

for (int k=0;k<3; k++) if (InBounds(FiC[k],LB,UB)) return 1;
return 0;}

}

Triangle Things
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Constructing octree of bounded things
BoundingBoxTreeNode(Thing** BS, int nS)
{   Things = BS; nThings = nS;

UB = FindMaxCoordinates(Things,nThings);
LB = FindMinCoordinates(Things,nThings);
Center = LB+(UB-LB)/2.0;    // Splitting point

// Not necessarily the best
// Alternatives would be centroid or
// the median of the SortPoint()’s.  

ConstructSubtrees();
};
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Constructing octree of bounded things

ConstructSubtrees()
{  if (nThings<= minCount || length(UB-LB)<=minDiag) 

{ HaveSubtrees=0; return; };
HaveSubtrees = 1;
int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp; 

// number of things in each subtree
SplitSort(Center, Things, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp);
Subtrees[0][0][0] = BoundingBoxTree(Things[0],nnn);
Subtrees[0][1][0] = BoundingBoxTree(Things[nnn],npn);
Subtrees[0][1][1] = BoundingBoxTree(Things[nnn+npn],npp);

:
:

}
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Constructing octree of bounded things

SplitSort(Vec3& SplittingPoint, BoundingThing** Things, 
int& nnn, int& npn, … ,int& pnp)

{  // reorder Spheres(…) into eight buckets according to               
// comparison of coordinates of Thing(k)->SortPoint() 
// with coordinates of splitting point.  E.g., first bucket has
//        Thing(k)->Center.x < SplittingPoint.x
//        Thing(k)->Center.y < SplittingPoint.y
// Thing(k)->Center.z < SplittingPoint.z
// This can be done “in place” by suitable exchanges.
// Set nnn = number of spheres with all coordinates less than
// splitting point, etc.

// If desired, may be modified to simultaneously find a good
// value for SplittingPoint (e.g., median)            

}
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Searching octree of bounded things

?

p!

jr
!
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Searching octree of bounded things

p!

jr
!

X ?
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Searching octree of bounded things

p!

X

?
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Searching octree of bounded things

p!

X

X

✔
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Searching octree of bounded things

p!

X

X

✔

✔
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Searching octree of bounded things

void BoundingBoxTreeNode::FindClosestPoint
(Vec3 v, double& bound, Vec3& closest)

{   if ((v.x > UB.x+bound) || (v.x<LB.x-bound)) return;  
if ((v.y > UB.y+bound) || (v.y<LB.y-bound)) return;
if ((v.z > UB.z+bound) || (v.z<LB.z-bound)) return;
if (HaveSubtrees) 

{ Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
:

Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
}

else 
for (int i=0;i<nThings;I++) 

UpdateClosest(Things[i],v,bound,closest);

};
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Searching octree of bounded things

void UpdateClosest(Thing* Thing,
Vec3 v, double& bound, Vec3& closest)

{ Vec3 cp  = Thing->ClosestPointTo(v);
dist = LengthOf(cp-v);
if (dist<bound) { bound = dist; closest=cp;};

};
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Constructing KD tree of bounded things

60
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Constructing KD tree of bounded 
things
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Constructing KD tree of bounded 
things
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Constructing KD tree of bounded 
things
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Constructing KD tree of bounded 
things
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Constructing KD tree of bounded 
things
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Constructing KD tree of bounded 
things
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Searching KD Tree of Bounded Things

p!

jr
!
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Searching KD Tree of Bounded Things

p!

jr
!

?
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Searching KD Tree of Bounded Things

?

p!

jr
!
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Searching KD Tree of Bounded Things

p!

jr
!

? ?X
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p!

Searching KD Tree of Bounded Things

X
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p!

Searching KD Tree of Bounded Things

?

X
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p!

Searching KD Tree of Bounded Things

?X ?
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Searching KD Tree of Bounded Things

p!
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Searching KD Tree of Bounded Things

p!
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Possible pathology with KD trees and 
Octrees

Poor alignment of 
shape with directions 
of the tree causes 
inefficient search.  In 
extreme cases can 
become quasi-linear 
time
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Solution: Covariance Trees*

* Referred to by my former student Seth Billings as Principal Direction Trees
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Covariance Trees
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Covariance Trees
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Covariance Trees

80



41

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees

81
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Covariance Tree Construction

{ }

=

=

= −

∑

!

! !

!! !1

Given surface sample of  points  

1
Compute centroid 

Compute residual vectors 

i
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i
i

i i

N

N

v
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!
p

!
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82



42

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Tree Construction

−

−

⎡ ⎤⎣ ⎦

= •

≤ • ≤

!

! !

! !!
1

min 1 max

Define a local node coordinate system

 = ,  and sort the surface points

according to the sign of the  component

of .  Compute bounding box 

      
Assign these poin

node

i i

i

x

F R p

b R u
b R u b

ts to "left" and
"right" subtree nodes.

!
p

!
iv !

iu xy
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Covariance Tree Construction

    

Form outer product matrix A =
!
ui

!
ui

T
i∑

Compute eigenvalues λ1,λ2λ3{ }  and  

eigenvectors Q=
!
q1,
!
q2,
!
q3

⎡⎣ ⎤⎦  of A

Find a rotation R  such that R x  is the eigenvector 

corresponding to the largest eigenvalue.
(Depending on algorithm used, Q will be a rotation
matrix, so all you may have to do is rotate Q)

!
p

!
iv !

iu
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Constructing Cov Tree of Objects

class CovTreeNode {

Frame F;             // splitting point
Vec3 UB; //  corners of box 
Vec3 LB;
int HaveSubtrees;
int nThings;
CovTreeNode* SubTrees[2];
Thing** Things;

:
:

CovTreeNode(Thing** Ts, int nT);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
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CovTreeNode(Thing** Ts, int nT)
{   Things = Ts; nThings = nT;

F = ComputeCovFrame(Things,nThings);
[UB,LB] = FindBoundingBox(F,Things,nThings);
ConstructSubtrees();
};

[vec3 UB,vec3 LB]=FindBoundingBox(F,Things,nThings)
{ UB = LB = F.inverse()*(Things[0]->SortPoint());

for (int k=0;k<nThings;k++)
{ [LB,UB] = Things[k]->EnlargeBounds(F,LB,UB);
};

return [UB,LB];
};

Constructing Cov Tree of Things
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Frame F = FindCovFrame(Thing** Ts, int nT)
{   [vec3 Points, int nP] = ExtractPoints(Ts,nT);

// may extract nT sort points or perhaps
// all corner points if things are triangles

return FindCovFrame(Points,nP);
};

Frame F = FindCovFrame(vec3* Ps, int nP)
{   vec3 C = Centroid(Ps,nP);

Matrix A = 0;
for (i=0;i<nP;i++) A+=OuterProduct(Ps[i],Ps[i]);
R = CorrespondingRotationMatrix(A);  // see notes
return Frame(R,C);
};

Constructing Cov Tree of Things
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Constructing Cov Tree of Things

ConstructSubtrees()
{  if (nThings<= minCount || length(UB-LB)<=minDiag) 

{ HaveSubtrees=0; return; };
HaveSubtrees = 1;
int nSplit; 
nSplit = SplitSort(F,things);
Subtrees[0] = CovarianceTreeNode(Things[0],nSplit);
Subtrees[1] = CovarianceTreeNode(Things[nSplit],nThings-nSplit);

}
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Int nSplit = SplitSort(Frame F, Thing** Ts,int nT)
{  // find an integer nSplit and reorder Things(…)  so that               

//      F.inverse()*(Thing[k]->SortPoint()).x <0 if and only if k<nSplit 
// This can be done “in place” by suitable exchanges.
return nSplit;

}

Constructing Cov Tree of Things
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Covariance tree search

    

Given 
  - node with associated Fnode  and surface sample points 

!
si .

  - sample point 
!
a,  previous closest point 

!
c,  dist =

!
a −
!
c

Transform 
!
a into local coordinate system 

!
b = Fnode

−1!a
Check to see if the point 

!
b is inside an enlarged bounding 

box 
!
bmin − dist ≤

!
b ≤
!
bmax + dist.  If not, then quit.

Otherwise, if no subnodes, do exhaustive search for closest.
Otherwise, search left and right subtrees.
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Searching a Covariance Tree of Things

void CovarianceTreeNode::FindClosestPoint
(Vec3 v, double& bound, Vec3& closest)

{   vLocal=F.Inverse()*v; // transform v to local coordinate system
if (vLocal.x > UB.x+bound) return;  
if (vLocal.y > UB.y+bound) return;

// similar checks on remaining bounds go here …. ;  
if (vLocal.z < LB.z-bound) return;

if (HaveSubtrees) 
{ Subtrees[0].FindClosestPoint(v,bound,closest);
Subtrees[1].FindClosestPoint(v,bound,closest);

}
else 

for (int i=0;i<nThings;I++) 
UpdateClosest(Things[i],v,bound,closest);

};
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Searching a Covariance Tree of Things

void UpdateClosest(Thing* T, Vec3 v, double& bound, Vec3& closest)
{  // here can include filter if have a bounding sphere to check

Vec3 cp  = T->ClosestPointTo(v);
dist = LengthOf(cp-v);
if (dist<bound) { bound = dist; closest=cp;};

};
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Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

• One method is simply to place 
a bounding sphere around 
each triangle, and then use the 
method discussed previously

• However, this may be 
inconvenient if the mesh is 
deforming
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Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

     

Observe that every point 
!
v on a triangle 

!
v1,
!
v2,
!
v3

⎡
⎣

⎤
⎦

can be expressed as a convex linear combination
!
v =λ1

!
v1 +λ2

!
v2 +λ3

!
v3  with λ1 +λ2 +λ3 = 1.  Therefore,

if 
!
v1,
!
v2,
!
v3

⎡
⎣

⎤
⎦  are in some bounding box, then 

!
v will also

be in that bounding box
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Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

• Select one point on the triangle to 
use as the “sort” point for 
selection of left/right subtrees.

• Good choices are centroid of 
triangle or just one of the vertices.

• However use all vertices of each 
triangle in determining the size of 
bounding boxes.

• Note this would work equally well 
for octrees.
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Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

• Select one point on the triangle to 
use as the “sort” point for 
selection of left/right subtrees.

• Good choices are centroid of 
triangle or just one of the vertices.

• However use all vertices of each 
triangle in determining the size of 
bounding boxes.

• Note this would work equally well 
for octrees.
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Covariance Trees for Triangle Meshes

• Select one point on the triangle to 
use as the “sort” point for 
selection of left/right subtrees.

• Good choices are centroid of 
triangle or just one of the vertices.

• However use all vertices of each 
triangle in determining the size of 
bounding boxes.

• Note this would work equally well 
for octrees.
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Covariance Trees for Triangle Meshes

• Select one point on the triangle to 
use as the “sort” point for 
selection of left/right subtrees.

• Good choices are centroid of 
triangle or just one of the vertices.

• However use all vertices of each 
triangle in determining the size of 
bounding boxes.

• Note this would work equally well 
for octrees.
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An Alternative to Bounding Boxes: 
Bounding Ellipsoids

Compute

!
pC = 1

N
!
v iN∑

!
ui =
!
v i −
!
pC

A =
!
ui
!
ui
T

i∑ = QΛQT

Λ = diag(
!
λ)

ρ2 =max
i

!
ui
TA
!
ui

Given a search point 
!
d and previous

closest distance δ, the ellipsiod may 
have a closer point if

(
!
d−
!
pC )TA(

!
d−
!
pC )< ρ2+ (δmax

k
λk )

2

Note: can probably get a tighter 
bound, but this will work 
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Simple spatial sort

Point list

!!
!

!

!

Index based on 
coordinates
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