
1

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Finding point-pairs

• Given an a, find a corresponding b on the
surface.

• One approach would be to search every
possible triangle or surface point and then
take the closest point.

• The key is to find a more efficient way to do
this

1

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Suppose surface is represented by dense
cloud of points

!
ak

!
bi{ }

?

2

2

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

3D airway reconstruction during nasal endoscopic
procedures without external tracking devices

Xingtong
Liu

Monoscopic Endoscope Video Dense Point Cloud Reconstruction

3

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Suppose surface is represented by dense
cloud of points

!
ak

!
bi{ }

?

How do we deal with
the large number of
possible matches?

4

3

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Find Closest Point from Dense Cloud

• Basic approach is to divide space into
regions. Suppose that we have one point bk*
that is a possible match for a point ak. The
distance Δ*=|| bk* - ak|| obviously acts as an
upper bound on the distance of the closest
point to the surface.

• Given a region R containing many possible
points bj, if we can compute a lower bound ΔL
on the distance from a to any point in R, then
we need only consider points inside R if ΔL <
Δ*.

5

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Given a match, is there anything closer?

!
ka

!
*
kb

6

4

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Divide cloud into cells

!
ka

7

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Can exclude everything outside circle

X X X
X X X
X X X

X X X X
X X X X X

!
ka

!
*
kb

8

5

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Find Closest Point from Dense Cloud

• There are many ways to implement this idea
– Simply partitioning space into many

buckets
– Octrees, KD trees, covariance trees, etc.

• Basic idea also works with surface meshes,
but need to find closest point on a triangle.

9

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Approaches to closest triangle finding

1. (Simplest) Construct linear list of triangles
and search sequentially for closest triangle
to each point.

2. (Only slightly harder) Construct bounding
spheres or bounding boxes around each
triangle and use these to reduce the number
of careful checks required.

3. (Faster if have lots of points) Construct
hierarchical data structure to speed search.

4. (Better but harder) Rotate each level of the
tree to align with data.

10

6

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

FindClosestPoint(a,[p,q,r])
Many approaches. One is to solve the system

() ()
in a least squares sense for and . Then compute

() ()
If 0, 0, 1, then lies within the triangle
and is the closest po

λ µ
λ µ

λ µ
λ µ λ µ

− ≈ − + −

= + − + −
≥ ≥ + ≤

a p q p r p

c p q p r p
c

int. Otherwise, you need to find a
point on the border of the triangle

p

q

r

a

c

Hint: For efficiency, work out
the least squares problem
explicitly for λ, μ

11

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Finding closest point on triangle

p

q

r

Region Closest point
λ<0 ProjectOnSegment(c,r,p)
μ<0 ProjectOnSegment(c,p,q)
λ+μ>1 ProjectOnSegment(c,q,r)

λ<0

μ<0

λ+μ>1

12

7

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

ProjectOnSegment(c,p,q)

λ = (c −p)• (q−p)
(q−p)• (q−p)

λ (seg) =Max(0,Min(λ,1))

c* = p + λ (seg) × (q−p)

p
q

c

c*
 λ

 1−λ

13

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Simple Search with Bounding Boxes

// Triangle i has corners [
!
p

i
,
!
q

i
,
!
r

i
]

// Bounding box lower =
!
L

i
= [L

xi
,L

yi
,L

zi
]T ; upper =

!
U

i
= [U

xi
,U

yi
,U

zi
]T

bound = ∞

for i = 1 to N do

{ if L
xi
− bound ≤ a

x
≤ U

xi
+ bound()and L

yi
− bound ≤ a

y
≤ U

yi
+ bound()

 and L
zi
− bound ≤ a

z
≤ U

zi
+ bound() then

 {
!
h = FindClosestPoint(

!
a,[
!
p

i
,
!
q

i
,
!
r

i
]);

 if
!
h −
!
a < bound then

 {
!
c =
!
h; bound =

!
h −
!
a ;};

 };

};

14

8

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Bounding Sphere

a

b

c

q

Suppose you have a point !p and are trying to find
the closest triangle (!a k ,

!
bk ,!ck) to !p. If you have

already found a triangle (!a j ,
!
b j ,
!c j) with a point !rj

on it, when do you need to check carefully for
some triangle k ?

Answer: if !qk is the center of a sphere of

radius ρk enclosing (!a k ,
!
bk ,!ck), then

you only need to check carefully if
!p − !qk − ρk <

!p − rj .

15

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Bounding Sphere

a

b

c

q

Assume edge (!a,
!
b) is the longest.

Then the center !q of the sphere will obey
!
b − !q() ⋅ !b − !q() = !a − !q() ⋅ !a − !q()
!c − !q() ⋅ !c − !q() ≤ !a − !q() ⋅ !a − !q()
!
b − !a() × !c − !a() ⋅ !q − !a() = 0

Simple approach: Try !q = !a +
!
b() / 2.

If inequality holds, then done.
Else solve the system to get !q (next page).

The radius ρ = !q − !a .

16

9

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Bounding Sphere

Assume edge (!a,
!
b) is the longest side of triangle.

Compute
!
f = !a +

!
b() / 2.

Define
 !u = !a −

!
f ; !v = !c −

!
f

!
d = (!u × !v)× !u

Then the sphere center !q lies somewhere along the line
 !q =

!
f + λ

!
d

with (λ
!
d − !v)2 ≤ (λ

!
d − !u)2. Simplifying gives us

 λ ≥
!v2 − !u2

2
!
d• !v − !u() = γ

If γ ≤ 0, then just pick λ=0. Else pick λ=γ .

17

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Simple Search with Bounding Spheres

/ / Triangle i has corners [
!
pi ,
!
qi ,
!
ri]

// Surrounding sphere i has radius ρi center
!
qi

bound = ∞;
for i=1 to N do

{ if
!
qi −
!
a − ρi ≤ bound then

 {
!
h = FindClosestPoint(

!
a,[
!
pi ,
!
qi ,
!
ri]);

 if
!
h−
!
a < bound then

 {
!
c =
!
h; bound =

!
h−
!
a ; };

 };
};

18

10

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Hierarchical cellular decompositions

19

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Hierarchical cellular decompositions

20

11

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing tree of bounding spheres

class BoundingSphere {

public:

Vec3 Center; // Coordinates of center

double Radius; // radius of sphere

Thing* Object; // some reference to the thing

// bounded

};

21

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounding
spheres

class BoundingBoxTreeNode {

Vec3 Center; // splitting point
Vec3 UB; // corners of box
Vec3 LB;
int HaveSubtrees;
int nSpheres;
double MaxRadius; // maximum radius of sphere in box
BoundingBoxTreeNode* SubTrees[2][2][2];
BoundingSphere** Spheres;

:
:

BoundingBoxTreeNode(BoundingSphere** BS, int nS);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};

22

12

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounding
spheres

BoundingBoxTreeNode(BoundingSphere** BS, int nS)
{ Spheres = BS; nSpheres = nS;

Center = Centroid(Spheres, nSpheres);
// This will be the splitting point
// Centroid is efficient to compute
// But other choices are possible

MaxRadius = FindMaxRadius(Spheres,nSpheres);
UB = FindMaxCoordinates(Spheres,nSpheres);
LB = FindMinCoordinates(Spheres,nSpheres);
ConstructSubtrees();
};

23

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounding
spheres

ConstructSubtrees()
{ if (nSpheres<= minCount || length(UB-LB)<=minDiag)

{ HaveSubtrees=0; return; };
HaveSubtrees = 1;
int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp;

// number of spheres in each subtree
SplitSort(Center, Spheres, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp);
Subtrees[0][0][0] = BoundingBoxTree(Spheres[0],nnn);
Subtrees[0][1][0] = BoundingBoxTree(Spheres[nnn],npn);
Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn],npp);

:
:

}

24

13

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounding
spheres

SplitSort(Vec3 SplittingPoint, BoundingSphere** Spheres,
int& nnn, int& npn, … ,int& pnp)

{ // reorder Spheres(…) into eight buckets according to
// comparison of coordinates of Sphere(k)->Center
// with coordinates of splitting point. E.g., first bucket has
// Sphere(k)->Center.x < SplittingPoint.x
// Sphere(k)->Center.y < SplittingPoint.y
// Sphere(k)->Center.z < SplittingPoint.z
// This can be done “in place” by suitable exchanges.
// Set nnn = number of spheres with all coordinates less than
// splitting point, etc.

}

25

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching an octree of bounding
spheres

p!

jr
!

26

14

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching an octree of bounding
spheres

p!

jr
!

27

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching an octree of bounding
spheres

void BoundingBoxTreeNode::FindClosestPoint
(Vec3 v, double& bound, Vec3& closest)

{ double dist = bound + MaxRadius;
if (v.x > UB.x+dist) return; if (v.y > UB.y+dist) return;

…. ; if (v.z < LB.z-dist) return;
if (HaveSubtrees)

{ Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
:

Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
}

else
for (int i=0;i<nSpheres;I++)

UpdateClosest(Spheres[i],v,bound,closest);

};

28

15

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching an octree of bounding
spheres

void UpdateClosest(BoundingSphere* S,
Vec3 v, double& bound, Vec3& closest)

{ double dist = v-S->Center;;
if (dist - S->Radius > bound) return;
Vec3 cp = ClosestPointTo(*S->Object,v);
dist = LengthOf(cp-v);
if (dist<bound) { bound = dist; closest=cp;};

};

29

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

?

30

16

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

?

31

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X ?

X

32

17

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X ?

X

33

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

?X

34

18

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

?

35

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X ?

X

36

19

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X

?

37

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X
?

X

38

20

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X
X

X

39

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X
X

?X

40

21

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X
?X

XX

41

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X
XX

?

XX

42

22

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

X

X X

X
XX

X

XX

43

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things

44

23

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things

45

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things

46

24

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things

class BoundingBoxTreeNode {

Vec3 Center; // splitting point
Vec3 UB; // corners of box
Vec3 LB;
int HaveSubtrees;
int nThings;
BoundingBoxTreeNode* SubTrees[2][2][2];
Thing** Things;

:
:

BoundingBoxTreeNode(Thing** BS, int nS);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};

47

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Class Thing
{ public:

:
vec3 SortPoint();

// returns a point that can be used to sort the object
vec3 ClosestPointTo(vec3 p);

// returns point in this thing closest to p
[vec3,vec3] EnlargeBounds(frame F,vec3 LB, vec3 UB);

// Given frame F, and corners LB and UB of bounding box
// around some other things, returns a the corners of a bounding
// box that includes this Thing2 as well,
// where Thing2=F.Inverse()*this thing

[vec3,vec3] BoundingBox(F);
{ return EnlargeBounds(F,[∞, ∞, ∞],[-∞,-∞,-∞]);};

int MayBeInBounds(Frame F, vec3 LB, vec3 UB);
// returns 1 if any part of this F.Inverse()*this thing could be
// in the bounding box with corners LB and UB

}

Properties of “Things”

48

25

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Class Triangle : public Thing
{vec3 Corners[3]; // vertices of triangle

:
vec3 SortPoint() { return Mean(Corners);}; // or use Corner[0]
[vec3,vec3] EnlargeBounds(frame F,vec3 LB, vec3 UB)

{ vec3 FiC[3]=F.inverse()*Corners;
for (int I=0;I<3;I++)

{ LB.x = min(LB.x,FiC[i].x); UB.x = max(UB.x,FiC[i].x);
LB.y = min(LB.y,FiC[i].y); UB.y = max(UB.y,FiC[i].y);
LB.z = min(LB.y,FiC[i].z); UB.z = max(UB.y,FiC[i].z);

};
return [LB, UB];
};

[vec3,vec3] BoundingBox(F)
{ return EnlargeBounds(F,[∞, ∞, ∞],[-∞,-∞,-∞]);};

int MayBeInBounds(Frame F, vec3 LB, vec3 UB)
{ vec3 FiC[3]=F.inverse()*Corners;

for (int k=0;k<3; k++) if (InBounds(FiC[k],LB,UB)) return 1;
return 0;}

}

Triangle Things

49

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things
BoundingBoxTreeNode(Thing** BS, int nS)
{ Things = BS; nThings = nS;

UB = FindMaxCoordinates(Things,nThings);
LB = FindMinCoordinates(Things,nThings);
Center = LB+(UB-LB)/2.0; // Splitting point

// Not necessarily the best
// Alternatives would be centroid or
// the median of the SortPoint()’s.

ConstructSubtrees();
};

50

26

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things

ConstructSubtrees()
{ if (nThings<= minCount || length(UB-LB)<=minDiag)

{ HaveSubtrees=0; return; };
HaveSubtrees = 1;
int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp;

// number of things in each subtree
SplitSort(Center, Things, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp);
Subtrees[0][0][0] = BoundingBoxTree(Things[0],nnn);
Subtrees[0][1][0] = BoundingBoxTree(Things[nnn],npn);
Subtrees[0][1][1] = BoundingBoxTree(Things[nnn+npn],npp);

:
:

}

51

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing octree of bounded things

SplitSort(Vec3& SplittingPoint, BoundingThing** Things,
int& nnn, int& npn, … ,int& pnp)

{ // reorder Spheres(…) into eight buckets according to
// comparison of coordinates of Thing(k)->SortPoint()
// with coordinates of splitting point. E.g., first bucket has
// Thing(k)->Center.x < SplittingPoint.x
// Thing(k)->Center.y < SplittingPoint.y
// Thing(k)->Center.z < SplittingPoint.z
// This can be done “in place” by suitable exchanges.
// Set nnn = number of spheres with all coordinates less than
// splitting point, etc.

// If desired, may be modified to simultaneously find a good
// value for SplittingPoint (e.g., median)

}

52

27

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

?

p!

jr
!

53

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

p!

jr
!

X ?

54

28

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

p!

X

?

55

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

p!

X

X

✔

56

29

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

p!

X

X

✔

✔

57

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

void BoundingBoxTreeNode::FindClosestPoint
(Vec3 v, double& bound, Vec3& closest)

{ if ((v.x > UB.x+bound) || (v.x<LB.x-bound)) return;
if ((v.y > UB.y+bound) || (v.y<LB.y-bound)) return;
if ((v.z > UB.z+bound) || (v.z<LB.z-bound)) return;
if (HaveSubtrees)

{ Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
:

Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
}

else
for (int i=0;i<nThings;I++)

UpdateClosest(Things[i],v,bound,closest);

};

58

30

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching octree of bounded things

void UpdateClosest(Thing* Thing,
Vec3 v, double& bound, Vec3& closest)

{ Vec3 cp = Thing->ClosestPointTo(v);
dist = LengthOf(cp-v);
if (dist<bound) { bound = dist; closest=cp;};

};

59

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded things

60

31

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded
things

61

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded
things

62

32

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded
things

63

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded
things

64

33

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded
things

65

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing KD tree of bounded
things

66

34

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

p!

jr
!

67

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

p!

jr
!

?

68

35

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

?

p!

jr
!

69

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

p!

jr
!

? ?X

70

36

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

Searching KD Tree of Bounded Things

X

71

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

Searching KD Tree of Bounded Things

?

X

72

37

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

p!

Searching KD Tree of Bounded Things

?X ?

73

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

p!

74

38

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching KD Tree of Bounded Things

p!

75

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Possible pathology with KD trees and
Octrees

Poor alignment of
shape with directions
of the tree causes
inefficient search. In
extreme cases can
become quasi-linear
time

76

39

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Solution: Covariance Trees*

* Referred to by my former student Seth Billings as Principal Direction Trees

77

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees

78

40

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees

79

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees

80

41

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees

81

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Tree Construction

{ }

=

=

= −

∑

!

! !

!! !1

Given surface sample of points

1
Compute centroid

Compute residual vectors

i

N

i
i

i i

N

N

v

p v

u v p

!
p

!
iv !

iu

82

42

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Tree Construction

−

−

⎡ ⎤⎣ ⎦

= •

≤ • ≤

!

! !

! !!
1

min 1 max

Define a local node coordinate system

 = , and sort the surface points

according to the sign of the component

of . Compute bounding box

Assign these poin

node

i i

i

x

F R p

b R u
b R u b

ts to "left" and
"right" subtree nodes.

!
p

!
iv !

iu xy

83

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Tree Construction

Form outer product matrix A =
!
ui

!
ui

T
i∑

Compute eigenvalues λ1,λ2λ3{ } and

eigenvectors Q=
!
q1,
!
q2,
!
q3

⎡⎣ ⎤⎦ of A

Find a rotation R such that R x is the eigenvector

corresponding to the largest eigenvalue.
(Depending on algorithm used, Q will be a rotation
matrix, so all you may have to do is rotate Q)

!
p

!
iv !

iu

84

43

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing Cov Tree of Objects

class CovTreeNode {

Frame F; // splitting point
Vec3 UB; // corners of box
Vec3 LB;
int HaveSubtrees;
int nThings;
CovTreeNode* SubTrees[2];
Thing** Things;

:
:

CovTreeNode(Thing** Ts, int nT);
ConstructSubtrees();
void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};

85

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

CovTreeNode(Thing** Ts, int nT)
{ Things = Ts; nThings = nT;

F = ComputeCovFrame(Things,nThings);
[UB,LB] = FindBoundingBox(F,Things,nThings);
ConstructSubtrees();
};

[vec3 UB,vec3 LB]=FindBoundingBox(F,Things,nThings)
{ UB = LB = F.inverse()*(Things[0]->SortPoint());

for (int k=0;k<nThings;k++)
{ [LB,UB] = Things[k]->EnlargeBounds(F,LB,UB);
};

return [UB,LB];
};

Constructing Cov Tree of Things

86

44

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Frame F = FindCovFrame(Thing** Ts, int nT)
{ [vec3 Points, int nP] = ExtractPoints(Ts,nT);

// may extract nT sort points or perhaps
// all corner points if things are triangles

return FindCovFrame(Points,nP);
};

Frame F = FindCovFrame(vec3* Ps, int nP)
{ vec3 C = Centroid(Ps,nP);

Matrix A = 0;
for (i=0;i<nP;i++) A+=OuterProduct(Ps[i],Ps[i]);
R = CorrespondingRotationMatrix(A); // see notes
return Frame(R,C);
};

Constructing Cov Tree of Things

87

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Constructing Cov Tree of Things

ConstructSubtrees()
{ if (nThings<= minCount || length(UB-LB)<=minDiag)

{ HaveSubtrees=0; return; };
HaveSubtrees = 1;
int nSplit;
nSplit = SplitSort(F,things);
Subtrees[0] = CovarianceTreeNode(Things[0],nSplit);
Subtrees[1] = CovarianceTreeNode(Things[nSplit],nThings-nSplit);

}

88

45

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Int nSplit = SplitSort(Frame F, Thing** Ts,int nT)
{ // find an integer nSplit and reorder Things(…) so that

// F.inverse()*(Thing[k]->SortPoint()).x <0 if and only if k<nSplit
// This can be done “in place” by suitable exchanges.
return nSplit;

}

Constructing Cov Tree of Things

89

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance tree search

Given
 - node with associated Fnode and surface sample points

!
si .

 - sample point
!
a, previous closest point

!
c, dist =

!
a −
!
c

Transform
!
a into local coordinate system

!
b = Fnode

−1!a
Check to see if the point

!
b is inside an enlarged bounding

box
!
bmin − dist ≤

!
b ≤
!
bmax + dist. If not, then quit.

Otherwise, if no subnodes, do exhaustive search for closest.
Otherwise, search left and right subtrees.

90

46

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching a Covariance Tree of Things

void CovarianceTreeNode::FindClosestPoint
(Vec3 v, double& bound, Vec3& closest)

{ vLocal=F.Inverse()*v; // transform v to local coordinate system
if (vLocal.x > UB.x+bound) return;
if (vLocal.y > UB.y+bound) return;

// similar checks on remaining bounds go here …. ;
if (vLocal.z < LB.z-bound) return;

if (HaveSubtrees)
{ Subtrees[0].FindClosestPoint(v,bound,closest);
Subtrees[1].FindClosestPoint(v,bound,closest);

}
else

for (int i=0;i<nThings;I++)
UpdateClosest(Things[i],v,bound,closest);

};

91

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Searching a Covariance Tree of Things

void UpdateClosest(Thing* T, Vec3 v, double& bound, Vec3& closest)
{ // here can include filter if have a bounding sphere to check

Vec3 cp = T->ClosestPointTo(v);
dist = LengthOf(cp-v);
if (dist<bound) { bound = dist; closest=cp;};

};

92

47

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

• One method is simply to place
a bounding sphere around
each triangle, and then use the
method discussed previously

• However, this may be
inconvenient if the mesh is
deforming

93

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

Observe that every point
!
v on a triangle

!
v1,
!
v2,
!
v3

⎡
⎣

⎤
⎦

can be expressed as a convex linear combination
!
v =λ1

!
v1 +λ2

!
v2 +λ3

!
v3 with λ1 +λ2 +λ3 = 1. Therefore,

if
!
v1,
!
v2,
!
v3

⎡
⎣

⎤
⎦ are in some bounding box, then

!
v will also

be in that bounding box

94

48

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

• Select one point on the triangle to
use as the “sort” point for
selection of left/right subtrees.

• Good choices are centroid of
triangle or just one of the vertices.

• However use all vertices of each
triangle in determining the size of
bounding boxes.

• Note this would work equally well
for octrees.

95

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees for Triangle Meshes

1v
!

2v
!3v

!
v
!

• Select one point on the triangle to
use as the “sort” point for
selection of left/right subtrees.

• Good choices are centroid of
triangle or just one of the vertices.

• However use all vertices of each
triangle in determining the size of
bounding boxes.

• Note this would work equally well
for octrees.

96

49

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees for Triangle Meshes

• Select one point on the triangle to
use as the “sort” point for
selection of left/right subtrees.

• Good choices are centroid of
triangle or just one of the vertices.

• However use all vertices of each
triangle in determining the size of
bounding boxes.

• Note this would work equally well
for octrees.

97

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Covariance Trees for Triangle Meshes

• Select one point on the triangle to
use as the “sort” point for
selection of left/right subtrees.

• Good choices are centroid of
triangle or just one of the vertices.

• However use all vertices of each
triangle in determining the size of
bounding boxes.

• Note this would work equally well
for octrees.

98

50

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

An Alternative to Bounding Boxes:
Bounding Ellipsoids

Compute

!
pC = 1

N
!
v iN∑

!
ui =
!
v i −
!
pC

A =
!
ui
!
ui
T

i∑ = QΛQT

Λ = diag(
!
λ)

ρ2 =max
i

!
ui
TA
!
ui

Given a search point
!
d and previous

closest distance δ, the ellipsiod may
have a closer point if

(
!
d−
!
pC)TA(

!
d−
!
pC)< ρ2+ (δmax

k
λk)

2

Note: can probably get a tighter
bound, but this will work

99

Copyright Russell Taylor, 2010-2021 Engineering Research Center for Computer Integrated Surgical Systems and Technology

Simple spatial sort

Point list

!!
!

!

!

Index based on
coordinates

100

