Interpolation and Deformations
A short cookbook
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Linear Interpolation

,P,=[40 30 20]
p, =20

o Ps=[20 20 20
o p;=10

p,=[10 15 20]
py =3
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Linear Interpolation

b, =[40 30 20]
q,=b
e P;=[20 20 20T
. G;=a+y(b-4)
p,=[10 15 20]

g, =a
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Linear Interpolation

1 -
o . — L
/./{; p3=p1+i(p2—pl)
o« A3=A1+1(A2—A1)
I_ila Al =(1—7L)A1 +1A2

A= (f)3 _ﬁl).(l_jz _f)l)

- (f’z _f)l)°(f)2 _f)l)
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Linear Interpolation (Barycentric Form)

r'd p, = up, +Ap, where 1+u=1
P, 4, Agz‘UAl"')LAQ
A= (f)a _f’l)°(f’2 _f)l)
(132 _131).(132_131)
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Bilinear Interpolation

— A (l_l) l_ii+1,_i+1

i+1,j

i 1 D)

i,
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Bilinear Interpolation

i,j+1

(1-u)

lli’j
u(4, M) = A (uﬁi+1,j+l + (1 —Hu )ﬁi+l,j )+ (1 - ;l")(uﬁi,j+l + (1 - :u)ﬁi,j)
= ﬁi,j +A (ﬁi+1,j - ﬁi,j )+ u (ﬁi,j+1 - ﬁi,j )+ l.u (ﬁi+1,j+1 - ﬁi,j
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Bilinear Interpolation

u.,....A4.. .
i+, 412 <541, j+1
ui4j+1"47',j+1 / /

i, ;A

i+, i, N

= AY
u .4, b

u (4, 1 )= interpolate({A, u }, {ﬁi,j Uy ol sl } -

4 ()":u ) = interpOIate({l’ ‘LL}, {Ai,j’ Ai+l,j’ Ai+l,j+1 ) A*i,j+1 }
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N-linear Interpolation

Let
Ay =g Ay B with 0, <1
be a set of interpolation parameters, and let
A={4,...4,
be a set of constants. Then we define:
NlinearInterpolate(A ,,A) =
(1-X, )NlinearInterpolate(A ,_,, {Al perer A ]9
+ A, NlinearInterpolate(A N_l,{AzN,IH,. s Ay ]9
NOTE: Sometimes in this situation we will use notation
AN = Ay Ny o
= NlinearInterpolate(A ,, A)
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Barycentric Interpolation

}\.”I_iz—l_il” ///,. P>
(1_7”)”132_131” ////
T B(L)=(1-1), + B,
Pro=~ =B, + b,
A+u=1
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Barycentric Interpolation

133 A
Q 4
N

/
[ ——+ ] o
S p(Lp)=ps+ AP, —p;) + (P, —P3)
:kfh +up, +(1_7V_l~l)ﬁ3
p(A,u,v)=Ap, +up, +Vp, Where A+u+v =}
A(A W, V) =24, + 4, + VA4,
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Barycentric Interpolation

Psg A
\ 3
AN

\ -
/ /
l_jl // /—/ ——_——_—)‘pz A
— 1t
4 N~
P| (B B, B;||A
1l=[1 1 1 |u
A%
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Barycentric Interpolation
Let

N
A ={k,.. . Ay} with0<A, <1 and Y2, =1
k=1
be a set of interpolation parameters, and let
A={4,..,4,}

be a set of constants. Then we define:

N
BarycentricInterpolate(A, A) = A*A = ZkkAk

k=1

NOTE: Sometimes in this situation we will use notation
A(A,) =A(A,,...,A,) =Barycentriclnterpolate(A , , A)

NOTE: This is a special case of barycentric Bezier
polynomial interpolations (here, 1 degree)
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Barycentric Interpolation

Given n+1 n-dimensional points a,---a, and a test point a,_, find

barycentric coordinates X=[),,...\ ] such thata,_ = Ad,
and ) A =1.
Solve
a, .. a A "
: :l atest ‘
1 1 : 1
A
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Interpolation of functions

y(v)
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Fitting of interpolation curves

» The discussion below follows (in part)

G. Farin, Curves and surfaces for computer-aided

geometric design, a practical guide, Academic
Press, Boston, 1990, chapter 10 and pp 281-284.
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1-D Interpolation
Given set of known values {y,(v,).....y,(v,.)},
find an approximating polynomial y = P(c,,...,C,;V)

N
P(c,,....c\v) = ZCkPN,k(V)
k=0

Note that many forms of polynomial may be used
for the B, (v). One common (not very good) choice

is the power basis:
P, (v)=v"

Better choices are the Bernstein polynomials and the
B-spline basis functions, which we will discuss in
a moment
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1-D Interpolation

Given set of known values {y,(v,).....,.(v,)},

find an approximating polynomial y = P(c,,...,C,;V)

N
P(CyrrriCpiV) = 2,C,Py (V)
k=0

To do this, solve:

PN,O(VO) PN,N(VO) Co Yo

PN,O(vm) PN,N(vm) Cyn Ym
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Bezier and Bernstein Polynomials

P(Cyr..-Cpiv) = kzN'ack Il\(l (1_V)N—k K

(V)

N-k

where 1— v) v

= i c,By,
BN,k (v)= [ /I\(I (

» Excellent numerical stability for 0<v<1

* There exist good ways to convert to more
conventional power basis
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Barycentric Bezier Polynomials
4 N
P(c,.....cpsuv)= . C, Tamva

k=0 k

N
=Y ¢, B, (uV)
k=0
where B, (u,v)= IZ uN ke utv=1

» Excellent numerical stability for O<u,v<1

* There exist good ways to convert to more
conventional power basis
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Bezier Curves

Suppose that the coefficients E; are multi-dimensional

vectors (e.g., 2D or 3D points). Then the polynomial

—_— N —_—
P co,...,cN;v)zxckBN,k(v)
k=0

computed over the range 0 <v <1 generates a Bezier

curve with control vertices E;

c, .
2
c ©
0
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Bezier Curves: de Casteljau Algorithm

Given coefficients C;, Bezier curves can be generated

recursively by repeated linear interpolation:

P(E...,EJ;V)sz’
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Iterative Form of deCasteljau Algorithm

Step1: b, «<c; for0<j<N
Step 2: fork «1step 1 until k=N do
forj < 0 step 1 untilj =N -k do
b, < (1-v)b; +vb,,,

Step 3: return b,
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Advantages of Bezier Curves

* Numerically very robust
* Many nice mathematical properties
+ Smooth

“Global” (may be viewed as a disadvantage)
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Quiz

» The link will be in the 2727?77
chat

* You have 5 minutes
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B-splines
Given

coefficient values C ={¢,,-,C, ., 4}
"knot points" U= {u,,"--,u, . ,p_,} Withu, <u, ,
D = "degree" of desired B-spline
Can define an interpolated curve P(C,u; u) onu, ,<u<u, , ,

Then
B L+D-1
P(Cu)= Y, & N°(u)
j=0

where Nf’ (u) are B-spline basis polynomials (discussed later)
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B-Spline Polynomials

Some useful references include

http://en.wikipedia.org/wiki/B-spline
http://vision.ucsd.edu/~kbranson/research/bsplines/bsplines.pdf
http://scholar.lib.vt.edu/theses/available/etd-100699-171723/
https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/L-
09 _BSplines_ NURBS.pdf
http://www.stat.columbia.edu/~ruf/ruf_bspline.pdf
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B-spline polynomials & B-spline basis functions

Given C, u,D as before

L+D-1
P(C.iu)= Y, ¢ N’(u)
j=0
where
NO(u) = 1 u_ Susu,
! 0 Otherwise
u—u. u.,—u
Nfu)= " N7(u)+ " N \(u) fork>0
Uj ey = U U~ 4
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B-Spline Polynomials

For a B-spline polynomial
_ L+D-1
P(C,G;t)= Y, ¢, N’(U.t)
j=0
the basis functions NjD (u,t) are a function of the degree of the polynomial
and the vector u = [uo,n-,un] of "knot points". The polynomial is "uniform" if

the distance between knot points is evenly spaced and "non-uniform” otherwise.
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deBoor Algorithm (Farin)

Given u, ¢, D as before, can evaluate P(c,u;u)
recursively as follows:

Step 1: Determine index i/ such that u; <u<u, 4

Step 2: Determine multplicity r such that

u._.=u

ior =Uip1 = =4

Step 3: Seta‘/? =, fori-D+1<j<i+1

Step 4: Compute P(c,u;u)=d";"

.1 recursively, where

k 3k—1 k 3k—1
geo Yok Y e, YU e %9 Brd)
j _U- —Uu. Il u. —u. i k k
j+D-k ¥ j-1 j+D-k ¥ j-1 Vj J/j
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deBoor Algorithm: Example D=3, r=0

P R R SR S o S W/
Uiip-k ~Uj-1 1 Ujip-k —Uj / 75-‘ Vf
8?4:10 =5({... . } 3.u)
( P dF + By &7 )/7:+1 -(( 1= )7+ (u- “)d:2+1) (Wq-u))
i :(0‘/2+1 df+ Bl dlyq )/7i+1 :( Ujyp —u)d] +(u- “)dm) Ui —u;)
a2 = (oc '+ d1)/y, ((u,+1 !, +u-u,_)d! )/(u,+1 1)
a4 :(0‘/1+ d? + B, 4dl. )/7i+1 :((Ui+3‘“)di +(u-up)dd )/ (U3 —u;)
d} = (O‘a 1 + Bl )/7’: -( 2 )+, 1)6?)/(“i+2—”i—1)
dj_4= (0‘/1 167 o + B4 4 )/%‘-1 :((“i+1‘“)a?—2 +(u=-u;_p)d) 4 )/(“i+1‘”i—2)
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deBoor Algorithm (alternative formula)

An alternative formulation from Wikipedia is given as:

Given u, ¢, D as before, can evaluate P(c,u;u)
recursively as follows:

Step 1: Determine index i such that u; <u<u;,,

Step 2: Determine multplicity r such that

u._,.=u

i-r iore1 =T

Step 3: Seta? =c, fori-D+1<j<i+1

Step 4: Compute P(c,u;u)=d"," recursively, where
- - ~ u-u
df = (1- o A+ o i where o, = !
b 1Dtk ~ Y]

Source: https://en.wikipedia.org/wiki/De_Boor%27s_algorithm

32 600.445 Fall 2000; Updated: 28 September 2021 - : ]
Copyright © R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology b

32

16



38  600.445 Fall 2000; Updated: 28 September 2021
Copyright © R. H. Taylor

Uniform B-Spline Polynomials

Third degree uniform B-spline P(C,U;t) = >, ¢ N(U,t) witht, = j
j

%(t—j)z ifj<t<j+1
%[—3(t—j—1)3+3(t—j—1)2+3(t—j—1)+1} ifj+1<t<j+2

N, @)= %[3(t—j—1)3—6(t—j—1)2+4:| ifj+2<t<j+3
%[1—(t—j—1)]3 ifj+3<t<j+d
0 otherwise

http://vision.ucsd.edu/~kbranson/research/bsplines/bsplines.pdf
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Efficient

Smooth
L ocal
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Some advantages of B-splines

Numerically stable
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2D Interpolation (tensor form)

Consider the 2D polynomial

P(u,v)= i ‘n c; A (u)B;(v)
Coo * Con || Bo(V)
=[Ay(u),++ A, (U)] :
CmO Cmn Bn(v)

where A (u) and B,(v) can be arbitrary

functions (good choices Bernstein polynomials or

B-Spline basis functions. Suppose that we have samples
Y. =Yy(u,v,) fors=0,...,N,

We want to find an approximating polynomial P.

40  600.445 Fall 2000; Updated: 28 September 2021

Copyright © R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology E

40

2D Interpolation: Finding the best fit

Given a set of sample values y _(u_,v,) corresponding to 2D coordinates
(ug,v,), left hand side basis functions [Ao(u),~~~,Am(u)] and right hand side
basis functions [ B,(v),-,B,(v)], the goal is to find the matrix C of

coefficients c;

To do this, solve the least squares problem
cOO

cO’I

Yo (U vo) |=| Afu)By(vy)  Ajuo)B,(vy) - AU)B(vy) - A(U)B,(v)|e

s s
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2D Interpolation: Sampling on a regular grid
A common special case arises when the (u,,v,) form a regular grid. In this
case we have u, e {u,,---,uy, }and v e {v,,--,v, }. For each value

v, € {v0,~~~,va } solve the N, row least squares problem

: : - : X
ys(uslvj) = Ao(us) Am(us) o
| : : .. : X/m
for the unknown m-vector X;. Then solve m n-variable least squares problems
[ Xoo | Xor || Xom | [ BolVo) Bi(vy) -+ B,(v,)] Coo | C10 | " | Cmo

o .

Xig | Xpq || X By(vs) Bivy) -+ B,(vy) Cot | Ci1 || Com

_XN,,O X, | | Xnym _BO(VNV) B1(VNV) Bn(va)

for the vectors [cjo,---,cjn]. Note that this latter step requires only 1 SVD or

similar matrix computation.
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2D Interpolation: Sampling on a regular grid

« There are a number of caveats to the “grid” method
on the previous slide. (E.g., you need enough data
for each of the least squares problems). But where
applicable the method can save computation time
since it replaces a number of m and n variable least
squares problems for one big m x n problem

* Note that there is a similar trick that you can play by
grouping all the common u; elements together.

 Note that the y’ s and the ¢’ s do not have to be
scalar numbers. They can be Vectors, Matrices, or
other objects that have appropriate algebraic

properties
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N-dimensional interpolation

Define
Fi1..-iN (U)= A1i1 (uy)-- 'ANiN (uy)

Then solve the least squares problem

Coo..0
.

_, — — C1O-~-O —
Fooo(Us) Fo.oUs) - Fp . (U) =y
00---0\™'s 10---0\™s my---m, \'s : - s
. .

Cm1 -m,
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N-dimensional interpolation

* The methods described earlier generalize naturally
to N dimensions.

P@) = P(uy ) = 3 S, AT (u) A", (uy)

=0 iy=0

where A" (u) can be arbitrary functions

(good choices are Bernstein polynomials or

B-Spline basis functions). Suppose that we have samples
y, =Yy(u,) for s =0,...,N,

45 600.445 Fall 2000; Updated: 28 September 2021

We want to find coefficients of ¢, , approximating polynomial P.
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Example: 3D Calibration of Distortion

Suppose we want to compute a distortion correction function for a
distorted 3D navigational sensor. Let

p, =known 3D "ground truth"
q, = Values returned by navigational sensor

Here we will construct a “tensor form” interpolation polynomial using 5™
degree Bernstein polynomials

Fr’jk (ux’ uy U, ) = BS.i (ux )B5,j (uy )Bs,k (uz )
We need to do the following:

1. Bernstein polynomials are really designed to work well in the range
0<u <1, so we need to determine a “bounding box” to scale our q,

values. l.e., we pick upper and lower limits g™ and g™ and
compute U, = ScaleToBox(q,,q™",q"*) where

min ,,max ) — X— Xmm

ScaleToBox(x,x™, x

max min
- X

X
2. Now, we set up and solve the least squares problem:
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Example: 3D Calibration of Distortion

z

x y
COOO COOO COOO
T T : : S XY 7
FOOO(us) F555(us) : : : - by Ps P
c,. cl. c;

555 555 555
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Example: 3D Calibration of Distortion

The correction function will then look like this:

p = CorrectDistortion(q)

~min Zmax

{ U=ScaleToBox(q,q™",q™)
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Radial Basis Function Interpolation
?(i)ziﬂgo(“i—f(km where x € R? o 2 \(I Yo

k=1 1 \ ,I ‘\ ,I N II \\

Given a set of points {ik} solve this system to find the fk :

0 ¢(|‘i2—i1|‘) (p( in_i1H) 1?1 X,

¢(Hi1 B i2“) 0 (p( X, - iZH) i:’2 - X,

| ollkgl) olx-zf) -0 L8] L%

Sometimes add linear combination of polynomials ;7/.()”() to the method
(%)= Y fo([x-x,/)+ Y87, where ¥g,7,(%,)=0
k=1 j=1 k=1
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Radial Basis Function Interpolation

f(x)= y fk(p(HY(—f(kH) where x € R?

k=1

Typical radial basis functions with global supportl']
[ Radial Basis Function | ¢(r) [ parameters | order |

Gaussians e=(en)” c>0 0
Polyharmonic Splines 2T keN m=k
*log(r) keN m=k+1
Multiquadrics Vr2 +c? c>0 1
Inverse Multiquadrics \/;21—07 c>0 0
Inverse Quadratics - c>0 0

[1] W. du Toit, Radial Basis Function Iterpolation,, MS Thesis, University of Stellenbosch, 2008

Example radial basis function with compact support

1
& 1
_) e\Hen J for 0 <r<—
o(r)= e

0 otherwise
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Radial Basis Function Interpolation

» Useful web links:

— https://en.wikipedia.org/wiki/Radial basis function interpolation

— https://core.ac.uk/download/pdf/37320748.pdf

— http://www.scholarpedia.org/article/Radial basis function#Compact
ly_supported radial _basis functions

— https://link.springer.com/content/pdf/10.1007/s00500-020-05211-
0.pdf

— https://www.researchgate.net/publication/340082978 Compactly s
upported radial basis functions how and why
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