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Feature-Based 2D-3D Registration

Given
— 3D surface model of an
anatomic structure
— Multiple 2D x-ray projection
images taken at known poses
relative to some coordinate
system C
— Initial estimate of the pose F of
the anatomic object relative to
the x-ray imaging coordinate
system C
Goal
— Compute an accurate value for F

Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology % @\
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Feature-Based 2D-3D Registration
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Feature-Based 2D-3D Registration
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Feature-Based 2D-3D Registration
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Feature-Based 2D-3D Registration
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A contour-based 2D-3D method ...
Gueziec et al., 1998
Step 0: Extract contours from x-ray images and compute corresponding lines between
source and detector
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
Copyright 2021 R. H. Taylor { i Center for C Surgical Systems and Technology $
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Step 2: For each x-ray path line line L;, identify the

A contour-based 2D-3D method ...

Gueziec et al., 1998

s :,\ <
. . \1\ AA =
Step 1: Given the current estimate for F = [Rt], T . -
compute the apparent projection contours /™ .
of the model for each viewing direction. / ,/VV\E
N )
l,

closest point p; on an apparent projection
contour. This will give a set of points on the

body surface to be moved toward the

corresponding x-ray lines

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
o =Y
eng

Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Engineering Research Center for Computer Integrated Surgical Systems and Technology
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A contour-based 2D-3D method ...

Gueziec et al., 1998

e
Distance d = ‘ ‘(f)-é) X VH -

-

(¥l=

Line direction v

c
Note: It is convenient to use the x-ray source position

(i.e., the center of convergence for a bundle of x-ray
projection lines) as the value for c.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
F
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A contour-based 2D-3D method ...

Gueziec et al., 1998

Step 3: Solve an optimization problem to
compute a value of F that minimizes
the distance between the p; and the L;.

2

e[y, EPZtempfFoc(e (R )

=min Z‘L'skeW(VI) . (c,. - (Rﬁi + i))”z
Step 4: IterateRs'Ecep's -3 until reach convergence

“~

/4
/

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

=Y
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Computational Note

Gueziec uses the Cayley parameterization for rotations:
R(ﬁ)=(|—skew(ﬁ))(I+skew(ﬁ))_1

This leads to the approximation
R(u) = I+skew(2u)

which is similar to our familiar R(a) = I+skew(a).

He also uses the notation U=skew(u). So R(u) = (I-U)(1+U)™

Similarly, we will see V=skew(V), etc.
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A countour-based 2D-3D method ...
Gueziec et al., 1998

Gueziec compared three different methods for performing
the minimization in Step 3:

— Levenberg Marquardt (LM) nonlinear minimization.
— Linearization and constrained minimization

— Use of a Robust M-Estimator

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Levenberg-Marquardt ...
(Following development in Gueziec et al., 1998)

Define f (%) =V, (€, - R(@)B, - )| where '=[i",¥'],V, = skew(¥,)

Our goal is to minimize
e(R=3. (3 <3|V, (& -R@p, -

We note that (x) is nonlinear. Levenberg-Marquardt is a widely
used optimization method for problems of this type. However, it requires
us to evaluate the partial derivitives of, /axj. Gueziec worked these out

symbolically for his problem

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Levenberg-Marquardt ...
(Following development in Gueziec et al., 1998)

Define f (%) =V, (€, - R(@)8, - )| where %' =[i",¥'],V, = skew(V,)

of
of, ou
J=|... & o=
X of
ot
of V'V(Rp,-c+t)
- f
ﬁ aRp 'V'V(Rp, —c+1)

f

!

Details on this may be found

in reference [45] of A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical

Gueziec’s paper Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

=Y
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Levenberg-Marquardt ...
(Following development in Gueziec et al., 1998)
Step 1: Pick A = a small number; pick initial guess for X
Step 2: Evaluate f(x) and J and solve the least squares problem
(J' I+ AAX — J‘f,. =10
for AX.
Step 3: X « X +AX; update A.
Step 4: Evaluate termination condition. If not done, go back to
to step 2
Note: Usually A starts small and grows larger. Consult standard
references (e.g., Numerical Recipes) for more information.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Constrained Linearized Least Squares ...
(Following development in Gueziec et al., 1998)
Step 0: Make an initial guess for R and t
Step 1: Compute p, < Rp, + t
Step 2: Define P = skew(p,), V, = skew(V,)
Step 3: Solve the least squares problem:
2
. : ) u Ll . ~
£2=min 2VP. V. { A }— V(c.-p,) subject to ||u|| <p
where p is sufficiently small so that I+2U approximates a rotation
Step 4: Compute AR = (I-U)(1+U)™
Update p, < ARp, + At; R < ARR; t < ARt + At
Step 5: If € is small enough or some othe termination condition is met,
then stop. Otherwise go back to Step 2.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Robust Pose Estimation ...

* Basicidea is to identify R
outliers and give them little g B ooy
or no weight. et gy I %y

;fﬂwﬁ ‘wf \
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T ey ! I
¥ I I
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3 | |
o | |
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s I
\ * I
\ I/
: \ /
Outliers N/
R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,
vol. 60, no. 3, pp. 313-342, 1994. —
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .j
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Robust Pose Estimation ...
* Basicidea is to identify R
. . . S \
outliers and give them little Hoge 1 \
or no weight. %& " * \
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Outliers N/
R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,
vol. 60, no. 3, pp. 313-342, 1994.
) - =
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Robust Pose Estimation ...
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R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,
vol. 60, no. 3, pp. 313-342, 1994.
=
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Robust Pose Estimation ...

* Basic idea is to identify

outliers and give them little
or no weight.

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,

vol. 60, no. 3, pp. 313-342, 1994.
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Robust Pose Estimation ...

Basic idea is to identify

outliers and give them little
or no weight.

.
.

.
.

Outliers excluded \ !

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,

vol. 60, no. 3, pp. 313-342, 1994.
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Robust Pose Estimation ...
* Basicidea is to identify R
. . . . \
outliers and give them little ¥ / \
or no weight. #e3E gt 1Ry
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Outliers excluded N/
R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,
vol. 60, no. 3, pp. 313-342, 1994.
) vy [ == |
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Robust Pose Estimation ...
* Basicidea is to identify N
. . : 2 /A
outliers and give them little 1 \
or no weight. *‘;.-)} " B
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R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,
vol. 60, no. 3, pp. 313-342, 1994.
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Step O:
Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Robust M-Estimator ...

(Following development in Gueziec et al., 1998)

Make an initial guess for R and t
Compute p, < Rp, + t

Define P = skew(p,), V, = skew(V,),
Solve a robust linearized problem
( 0.6745 e,

e=argmin ) p median({e })

] where ei=‘ ‘\li(ﬁi —c,+2Pu+ AE)H
u,At i

(See next slide)

Compute AR = (I-U)(1+U)™’

Update p, <— ARp, + At; R < ARR; t « ARt + At

If € is small enough or some othe termination condition is met,

then stop. Otherwise go back to Step 2.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based

Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, .J
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Robust M-Estimator ...
(Following development in Gueziec et al., 1998)
Step 3.0: Setii=0, At=0
Step 3.1: Compute e, =||V(B, —€,+2Pii+ At)|, s = median({--e,-})/ 0.6745,
Step 3.2: Solve Cx=d, where x' =[u',t']
e | 2PWP PW 3 e | PWE -p)
C=2\P(_,) Pt it andd:z\P(_,) i Ial aI
i S 2P W, W, i S Wi(c,-p;)
¢ ooy ,u(1—,uz/az)2 ileuH<a
where W =V'V. =l-vv' ¥(u)= -
0 otherwise
(Note: We use a=2)
Step 3.3: lterate steps 3.1 and 3.2 until a suitable termination condition
IS reaChed' A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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A countour-based 2D-3D method ... results
Gueziec et al., 1998

Before After

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

. 0=y
Copyright 2021 R. H. Taylor { i Center for Ce Surgical Systems and Technology SN
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A countour-based 2D-3D method ... results

Gueziec et al., 1998

Levenoerg Marquardt

Y
e 5
S <
N
R T
S

e

Error vs noise and outliers

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

=X
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A contour-based 2D-3D method ... times

Gueziec et al., 1998

TABLE 1
AVERAGE EXECTUTION TIMES IN MS FOR THE THREE
ReGisTrRATION METHODS APPLIED TO Data SETS THAT
Conprise 100 Pornts (Tor) anp 20 Points (BorTom)

Number Pomts/Method M Linear Robust

100 points (CPU time) 790 690 28
20 points (CPU time) 200 42 96

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology %
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Sample Set Analysis
* Question: How good is a particular set of 3D sample points for
the purpose of registration to a 3D surface?
* Long line of authors have looked at this question
* Next few slides are based on the work of David Simon, et al
(1995)
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology %
33
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Sample Set Selection

Copyrigh I e
opyright 2021 R. H. Taylor ineeri Center for C: Surgical Systems and Technology ) )

Sample Set Analysis: Distance Estimates

Let

F(x)=0
be the implicit equation of a surface, then one good esti-
mate of the distance of a point x to the surface is

F(x)
IVFX)]
) )=
Copyright 2021 R. H. Taylor ineeri Center for Ct Surgical Systems and Technology %
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Sample set analysis: sensitivity

Let x, be a point on the surface, and let 7°(7]) represent
a small perturbation with parameters 77 with respect to
the surface of point x,:

x; = T(M)xs
Then we define V(x;) to be

Ve = PG ]

where n; is the unit normal to the surface at x;. So,
D(T(m)%s)) = VI (x:)7]
Squaring this gives
DHT[M)x,)) = TV (xs) VT (x,)7
= 7" M(x,)7

Note that M is 6 x 6 positive, semi-definite, symmetric
matrix.

LUBIICE 1 NESTEaI U LEIE U1 wulnputer niegiateu surgiear syswens and Technology

36
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Sample set analysis: sensitivity
For a region R, define

Erm) = 7"

> M(Xs)]ﬁ

XsER

= 7 Wry

= 7QAQ™

= ¥ M@ @)

1<i<6

e Note that the eigenvectors q; correspond to small dif-
ferential transformations T(q;). and can sort eigen-
values so that

MZX>...2 X
o Note that eigenvector q; corresponds to direction of
greatest constraint.

e Similarly, can also think of gg as the least constrained
direction.

37
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Sample Set Analysis: Goodness Measures

e Magnitude of smallest eigenvalue (Simon)

¢ (Kim and Khosla)

AL D6
A+ + X
e Nahvi )
Ag
A
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology jﬁ,-
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Sample Set Selection
* One blind search method (similar to Simon, 1995) is:
— Randomly select sample points on surface
— (prune for reachability)
— evaluate goodness of sample set using some criterion
— repeat many times and choose the best one found
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology jﬁ,-
39
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Sample Set Selection
* Refinement of blind search (hill climbing):

— Randomly select sample points on surface
— (prune for reachability)
— evaluate goodness of sample set using some criterion

— replace a point from sample set with a randomly selected
point

— evaluate goodness
— if better, keep it
— else revert to original point and try again

* Variations include simulated annealing, “genetic” algorithms

Copyright 2021 R. H. Taylor

40
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Sample Set Selection: Another Alternative

o Select large number of random points x;
® Prune for reachability

e For each point, compute constraint direction V, =
V(x,). To a first approximation, a measurement at
x; with accuracy € constrains 77 by

Vil < e
o Now select subset of the x, that minimizes, e.g.,
xrgn max ﬁTSﬁ
subject to

{6, € {01}
‘5svsﬁ| < €
Y5 <

subsetsize

There are various ways to do this.

Copyright 2021 R. H. Taylor

Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Sample Set Selection: Another Alternative (con’d)

e One can also minimize other forms, e.g.,
min max |a;7;
5
subject to similar constraints

o An alternative is to minimize the number of sample
points required to ensure that some constraints on 77
are guaranteed to be met. E.g..

n}in 56
such that
8, € {0,1}
5 < Elimit
where
¢ = max7y' S7
or some other form subject to

|5svsﬁl <€

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Probabilistic Registration

* Registration methods typically use some optimization
algorithm to find a “best” transformation between one data
set and the other.

* |t makes sense to try to find the “most likely” registration
transformation.

* |CP minimizes sum-of-squares distances.

* This is equivalent to assuming that point-pair match
probabilities are independent and symmetric Gaussian
distributions based on distances

* But there are a number of other methods that explicitly
consider probabilities ...

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Coherent Point Drift

e A. Myronenko and X. Song, "Point-Set Registration:
Coherent Point Drift", IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 32- 12, pp. 2262-2275, 2010.
e Alignment of point clouds
— Fast method follows “EM” paradigm

— Tolerates outliers and noise
— Transformations: Rigid, affine, general deformable
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Registration of intraoperative data to preoperative models

— Provides tool positions relative to CT

* Data sources for registration
— Tracked ultrasound /7
— Tracked (or calibrated) range data Il,
p N [
. I
Co-Register : %

-ﬂ

Range Images

i_=||| nl Pre-op CT /
ca Ultrasound

Ultrasound
Patient Imaging

Q

and C

Range Imager

* Want to know registration from tracker to
CT space Optical @
Tracker  Fg
Y

o

S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image C

Interventions (MICCAI), Boston, October, 2014. (accepted).
Engineering Research Center for Computer Integrated Surgical Systems and Technology

TYT
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Multi-Modal Feature-Based Registration

Question: How to combine multiple data sources, in order to improve the
accuracy and robustness of registration outcomes?

TOF *m

Camera }’
J—> Optical
Feature-Based ‘ Tracker
k[ 257 Fragus Intensity-Based
Us 6 Slice Ultrasound Volume:

CT Image Patient

Billings S, Kapoor A, Keil M, Wood BJ, Boctor E (2011) A Hybrid Surface/Image-Based Approach to Facilitate
Ultrasound/CT Registration. SPIE, Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy 7968:
79680V-79680V-12

47

Example: Clear Guide Medical Navigation System

» Handheld device:
— low cost
— integrated on probe
— ease of use
— no workflow interruptions
— in-situ guidance
— no tool calibration
— no sterility issues
— high accuracy
— real-time fusion
— real-time quality control

N . N
Copyright 2021 R. H. Taylor ineeri Center for Ct Surgical Systems and Technology SN

48

10/26/21

22



Easy-to-Follow Guidance

e CG-1 has traditional ultrasound screen AND
on-screen guidance overlay

=

X =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m’

49

Real-time Multi-modal Fusion

Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ, W
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Multi-Modal Feature-Based Registration
Question:  How to combine multiple data sources, in order to improve the
accuracy and robustness of registration outcomes?

Ultrasound US Vessels
.4
. g
Pre-Op CT Vessel Model
CT Surface :
Video

Model

ol

Range Imaging Tracked Pointer

Billings S, Kapoor A, Keil M, Wood BJ, Boctor E (2011) A Hybrid Surface/Image-Based Approach to Facilitate Ultrasound/CT Registration. In: SP/E,
Medical Imaging 201 1: Ultrasonic Imaging, Tomography, and Therapy

Multi-Modal Feature-Based Registration

Question:  How to combine multiple data sources, in order to improve the
accuracy and robustness of registration outcomes?

UItrasound\ / N
Features

Video Features

~|..F

L . oe0®
Range Imaging
Tracked
Pointer
=
Copyright 2021 R. H. Taylor Credit: Seth Billi ineeri Center for C Surgical Systems and Technology %
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Iterative Closest Point (ICP) Revisited . g» TN e

* Widely popular and useful method for point cloud to surface
registration introduced by Besl & McKay in 1992
* Many variants proposed since its inception affecting all aspects

of the algorithm (robustness, matching criteria, match
alignment, etc.)

» Matching Phase:

for each point in the source shape, find the closest
point on the target shape

y; = Cep(T(x;), W) = argnqlin ly = T'(x:)]]2
yev

> Registration Phase:

compute transformation to minimize sum of square TREG o
distances between matches 37 @ 3 o
a o L % 4
. 2 2
T = argmin Z lys — T(xs)]5 ° .
L) 1
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image Computing and Comp Assisted
Interventions (MICCAI), Boston, October, 2014.
Copyright 2021 R. H. Taylor Credit: Seth BillingEngineering Research Center for Computer Integrated Surgical Systems and Technology m, .J
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Most-Likely Point Paradigm Illlustrated with ICP
1. Probability Model: isotropic Gaussian
2y _ 1 — 52z ly—x|”
fma,t(th(x ‘ Yo ) = (27{'0’2)3/2 e 2
2. Match Phase: HE e e e &
_ 5oz lyi=T()I1?
= argmax ——— 575 ' € 2072
vew (2na?)/?
— argmin |ly; — T(x)]|
yiEV
n
3. Registration Phase: T = argmax [ [ fuaren(T(x:) | yi,0°)
T )
TIVL 1 1 2
— — oz llyi=Tx)l
= argms ——a5 € 207
gT 4XU (2702)3/2
1 n
- 2\3/2 ) )12
— arbfrnax {—nlog ((27r0 ) ) ~ 5,2 Z llyi — T(xa)l
n
— argminz lly: = T(xo)|)?
T
4
, =
Copyright 2021 R. H. Taylor Credit: Seth Billing§ngineering Research Center for Computer Integrated Surgical Systems and Technology P ahl
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Outline of Registration Algorithms
e o Tre
) } Y

ICP - Iterative Closest Point
— isotropic position data

00
b

o

Tres

| IMLP - Iterative Most Likely Point | @ §
— anisotropic position data * b
. (]

— robust to outliers

* IMLOP - Iterative Most Likely Oriented Point ’} 7 Tree
— isotropic position & orientation data

LR NIEN
*  G-IMLOP - Generalized IMLOP } % T
— anisotropic position & orientation data ?% ,_Rii -

*  P-IMLOP - Projected IMLOP
— anisotropic position & projected orientation data Tres

U= |
Copyright 2021 R. H. Taylor Credit: Seth Billii ineeri Center for C: Surgical Systems and Technology %

Sources of Anisotropic Uncertainty

Tomographic Imaging

Y

A

Figures: ifoi//www.ndigital.com/wo:

L7
m' Slice thickness ; The Essential Physics of
5 i ‘Medical Imaging, 3 ed.;, .
l' (elevational)
Axial

A B 00k by-30-L d-T¢

http://i00.i.aliimg.com/photo/v0/105832128/CT_Scan_equipment.jpg

) =]
Copyright 2021 R. H. Taylor Credit: Seth Billi ineeri Center for C Surgical Systems and Technology SNV
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Prior Work: Anisotropic Registration

* Generalized Total Least Squares ICP (GTLS-ICP)

Estépar RSJ, Brun A, Westin C-F (2004) Robust generalized total least squares iterative closest point
registration. In: MICCAI 2004

— Registration Phase

* anisotropic noise model

» ad-hoc implementation less accurate / efficient; can be unstable
— Match Phase

* isotropic (i.e. closest-point matching)

* Generalized ICP (G-ICP)

— Registration Phase

* anisotropic noise model limited to model locally-linear surface regions
surrounding each feature point of a point cloud shape

* uses off-the-shelf conjugate gradient solver
— Match Phase
* isotropic (i.e. closest-point matching)

Segal A, Haehnel D, Thrun S (2009) Generalized-ICP. In: Robotics: Science and Systems V

Copyright 2021 R. H. Taylor

U =5
& YW

Credit: Seth BillingBngineering Research Center for Computer Integrated Surgical Systems and Technology
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Prior Work: Anisotropic Registration

* Anisotropic ICP (A-ICP)

Maier-Hein L, Franz AM, Dos Santos TR, Schmidt M, Fangerau M, et al. (2012) Convergent iterative closest-
point algorithm to accomodate anisotropic and inhomogenous localization error. IEEE Trans Pattern Anal Mach
Intell 34: 1520-1532.

— Registration Phase
* anisotropic noise model

* ad-hoc implementation does not fully account for noise in both shapes (i.e.,
lacks ability to reorient the data-shape covariances during optimization)

— Match Phase

* anisotropic noise model with non-optimal matching (finds minimal
Mahalanobis distance match rather than most-likely match)

* inefficient implementation; also cannot guarantee that the “best” match is
found

— Initializes registration by ICP (due to inefficient match phase)

Copyright 2021 R. H. Taylor Credit: Seth Billings Engineering Research Center for Computer Integrated Surgical Systems and Technology

- o=
P Y

59

10/26/21

27



Iterative Most Likely Point (IMLP)

Probability Model: anisotropic Gaussian

_ ! e FE0T (B4 Z) My —x)
fmatch(x|y~ZX'ZY)_ (271_)3/2|2x+2y|1/2 . :

Match Phase: o
e W

) v

+ (yi = T(x:))"(REGR" + y)~ yi — T(xi))

[yi, Byi] = argmin {log(‘RExiRT + Xy
yi:Zylev

Registration Phase: {xi} -
T = argmin Y (yi — T(x:))"(RER" + i) ' (vi — T(x)) o Ne ©
T=[Rt] 7 * o

Billings SD, Boctor EM, Taylor RH (2015) Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for

Computing Optimal Shape Alignment. PLoS One 10: e0117688

60
IMLP: Match Phase yi??
Xi
[ ]
* Due to anisotropic distance metric, standard KD-tree search techniques
do not apply.
* Approach: PD-tree search with modified node test
Constructing the PD tree:
1. Add all datums to a root node
2. Compute covariance of datum positions within the node
3. Create minimally-sized bounding box aligned to the
covariance eigenvectors
4. Partition node along the direction of greatest extent
5. Form left and right child nodes from the datums in each
partition
PD Tree Constructed 6. Repeat from Step 2 for left and right child nodes until #
by Datum Positions datums in node < threshold or node size < threshold
Copyright 2021 R. H. Taylor Credit: Seth Billi ineeri Center for C Surgical Systems and Technology %
61
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IMLP: Match Phase yi??

Searching the PD tree:

Assume the current match candidate has a match error
equal to Epest

can any feature in this node possibly provide a
match error less than Epest?

[yi, By = argmin {log(ﬂixxiRT + 3y
yiElew

+ (vi — T(x:))"RER" + 2y:) " (yi — T(x:))

&£ (¥i — T(x:))" (REGR” + Znode) (yi — T(x3)) < Evest — 10gmin

Node Test: if the ellipsoid

Node of the PD Tree

E={y | v — T(x))"(RER” + Znode) " (7 — T(%:)) < Eest — l0gmin}

intersects the bounding box of the node, then search the node

Copyright 2021 R. H. Taylor Credit: Seth BillingBngineering Research Center for Computer Integrated Surgical Systems and Technology $ &\ ,7
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IMLP: Match Phase y:i??

Xi
Searching the PD tree:
Assume the current match candidate has a match error
equal to Epest

can any feature in this node possibly provide a
match error less than Epest?

[yi, 2y = argmin {bg(p{Exi,RT + 2y
yo.Zyi]ew

T (ys = T(x)) (REGRT + Zy0) (s - T(xm}

£ (yi = T(x:)) (RERT + Biode) ™ (i — T(xi)) < Evest — l0gumin

Details in Billings’ Thesis

Node Test: if the ellipsoid \

Node of the PD Tree Pd ~
E={y | (y = T(x))"(REGR + Sode) "' (y — T(x:)) < Bt ogumin}!
~

-

intersects the bounding box of the node, then search the node

Copyright 2021 R. H. Taylor Credit: Seth Billi ineeri Center for C Surgical Systems and Technology % gV
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{a} fyi)
IMLP: Registration Phase vo T o,
1. Re-formulate the cost function from an unconstrained optimization ) ° O

n

T = argmin Z(yi —Rx; —t)"(RELR"+2,,) ' (y; — Rx; — t)

Rt] =)

to a constrained optimization
n n
T= ar[gm]in D 6k — XIS —x) + (3 — ¥R i — v))
Rt 1=l i=1

subject to:  Fy(x;,y/ . R, t) =y, —Rx/ —t=0

xi* - true (unknown) data-point position
y;i¥ - true (unknown) model-point position

2. Linearize the constraints with a Taylor series centered at the measured (known) data

Fi(x;/,y; R, t) ~ Ff.(x;, yi, da, dt)
= FY(x;,yi, Ri, 1) — ryi + Ryry + skew(Ryx;)da — dt = 0

Noteusing: AR =~ I + skew(da) Iy = X; — X/ Ly =yi— Y/

=
Copyright 2021 R. H. Taylor Credit: Seth BillingEngineering Research Center for Computer Integrated Surgical Systems and Technology % '},’
64
IMLP: Registration Phase
3. Apply the method of Lagrange multipliers to solve constrained optimization.
3a. Form the Lagrange function using the linearized constraints
n n n
L(da,dt, \) =Y riBg g+ > rnEgt i + Y A Ff(xi,yi, da, dt)
i=1 i=1 i=1
3b. Solve zero gradient w.r.t. the optimization parameters and the Lagrange multipliers
J'£7Jdp = —J7E 70
r f{’ skew(Ryxq) -1
da
dp = =11 J= : doE= {FS’EXFT + 2\}
dt
- £ skew(Ryx,) -1
-Ry P PN
FO— 5, = %, =
—Ry. P2 P2
4. Iteratively solve 3b by linear least squares until convergence.
Rir1 = R(do)Ry, tpo =t +dt
) =
Copyright 2021 R. H. Taylor Credit: Seth BillingEngineering Research Center for Computer Integrated Surgical Systems and Technology %} 3 ;’
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IMLP: Experiments Credit:seth Bilings

Data Shape: 100 noisy points + outliers simulated from a mesh model of a human hip
Model Shape: point-cloud formed from the center points of the mesh triangles
Random initial misalignments [30,60] mm and [30,60] degrees

Target registration error (TRE) averaged over 300 randomized trials for each test case

A Il icP
4 B GicP
I Robust ICP
Il cPD
B MLP

12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9
-50 C Test Case D Test Case
7 7
6 J ﬁl & @ & & [
Average Runtime (sec.) by Test Case
Alg 1 2 3 4 5 6 7 8 9
1CP 0.009 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009
IMLP-CP 0.015 0.016 0.019 0.016 0.020 0.019 0.015 0.017 0.015
IMLP-MD 0.068 0.078 0.093 0.079 0.097 0.093 0.067 0.079 0.069
GICP - - - - - - - - -
CPD (2 cores) 3.465 4.346 4.336 3.864 4.340 4.374 4.238 4.650 4.484
IMLP 0.068 0.082 0.102 0.078 0.103 0.099 0.067 0.084 0.073
67
. Credit: Seth Billings
IMLP: Experiments )
e Data Shape: 100 noisy points simulated from a mesh model of a human femur
e Model Shape: point-cloud formed from the center points of the mesh triangles
¢ Random initial misalignments [10,20] mm and [10,20] degrees
« Target registration error (TRE) averaged over 300 randomized trials for each test case
al |
= [HEcpP
40 [ IMLP-CP
B IMLP-MD
20 = 3r I Gicp
£ Il cPD
0 o 5 I IMLP
20 E
40 1t . )
60 I
-40 0
1 2 3 4 5 6 7
Test Case
Alg. Failure Rate (%) by Test Case
1 2 3 4 5 6 7
ICP 15.0 10.7 17.3 137 14.7 18.7 16.3
iMLP-CP 47 2 53 43 43 43 4.0
IMLP-MD 6.0 33 73 5.3 7.0 6.7 5.3
GicP 6.0 43 83 6.3 6.0 53 4.7
cPD 0.0 0.0 0.0 0.0 0.0 03 03
IMLP 6.0 3.0 7.0 5.0 6.0 6.3 5.0
68
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Credit: Seth Billings

IMLP: Experiments

Fig 9. Registration of shapes having partial overlap. (Experiment 7). (A): The statue Laurana sub-divided into (B): front and (C): right half-sections, such
that (D): a 50% overlap exists between the two sub-shapes. The sub-shapes were (E): misaligned by 10 mm and 10 degrees in a random direction and then
registered using (F): CPD [20], (G): GICP [11], and (H): the proposed IMLP algorithm. Sub-figures (E-H) show the initial misalignment and the final registered
alignments of the two shapes for the 6th randomized trial of Experiment 7, which involved 10 randomized trials in total.

69

. . . . D7‘
Iterative Most Likely Oriented Point ;F;'\ -
(IMLOP) EAERVAN

» Matching Phase:
for each oriented point in the source shape, find the
most likely oriented point on the target shape

vy = Cuvp(T(x;), W) = argmwax Smaten(T(23),Y)
ve

> Registration Phase:
compute transformation to maximize the likelihood
(i.e. minimize negative log-likelihood) of oriented
point matches

2
) 1 n n 1 ‘% f
T= arg}mn (W ; lypi — T(xpi) |13 — & Zy,,iTRa:m) Ve I

i=1

S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image Computing and C Assisted
Interventions (MICCAI), Boston, October, 2014.
) 0) =
Copyright 2021 R. H. Taylor { i Center for Ct Surgical Systems and Technology
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Sources of Orientation Data

\ e g !

force/torque
2o/, sensor

3

Figures: odigital 2013/09/4c0) isvicral.ong; The Essential Physics of Medical Imaging, 3 ed.; infoteched. 013/01/LAB:
ici i i i ; Liu X, Cevikalp

CALBaby-3D- Teste: - " - v 20z
H, Fitzpatrick JV [2003) Marker orientation in fiducial registration. In: Sonka M, Fitzpatrick JM, editors. SPIE, Medical Imaging 2003: Image Processing. Vol. 5032. pp. 1176-1185.

) =]
Copyright 2021 R. H. Taylor Credit: Seth Billi ineeri Center for C Surgical Systems and Technology
Experiments

Performance comparison of IMLOP vs. ICP was made through a simulation study using a
human femur surface mesh segmented from CT imaging.

* source shape created by randomly sampling points from the
mesh surface (10, 20, 35, 50, 75, and 100 points tested)

* Gaussian [wrapped Gaussian] noise added to the source
points (0, 0.5, 1.0, and 2.0 mm [degrees] tested)

* Applied random misalignment of [10,20] mm / degrees
* 300 trials performed for each sample size / noise level

* Registration accuracy (TRE) evaluated using 100 validation
points randomly sampled from the mesh

* Registration failures automatically detected using threshold
on final residual match errors

Example source point cloud
sampled from dark region of
target mesh.

ICP: threshold on position residuals only
IMLOP:  threshold on position & orientation residuals

S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image Computing and Comp Assisted
Interventions (MICCAI), Boston, October, 2014.

) =]
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology @)
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Noise Case: 1 mm/degree
A 8 T T T T T T T T 100
4 ——Avg TRE of Successful Registratons: ICP
—e—Avg TRE of Successful Registratons: IMLOP =
Average TRE of successful g™ -&-Registration Fail Rate: ICP v
registrations and registration = ~*-Registration Fail Rate: IMLOP 5
. 48 i : 80—
failure rates across all sample & F
B . = w
sizes for noise levels of 1 (A) and g, 1. 5
£ B
2 (B) mm [degrees]. 2 3
13 j=J
o 16 - —20 Igé
Registration failure threshold set ¥
to twice the noise level for both oW e W T W W
position and orientation. SourcerShape;Sampleisize
Noise Case: 2 mm/degrees
B WD‘ T T T T T T T T 100
—— Avg TRE of Successful Registrations: ICP
—e—Avg TRE of Successful Registrations: IMLOP 3
g -=-Registration Fail Rate: ICP i <
£ —&-Registration Fail Rate: IMLOP =
w ['4
o ' : —
[ ©
c w
o =
= o 2
5= ®
2] =
D R
A 20 3
= ['4
10 20 30 40 50 60 70 SE 90 100
Source Shape Sample Size
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image Comp and Comp Assisted
Interventions (MICCAI), Boson, October, 2014. (accepted).
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology % R J
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Experiments
Results from 300 trials within a single sample size (75 points) and noise level (1.0 mm
[degree]). NOTE: improved accuracy and failure detection capability for IMLOP.
Icp IMLOP
30 T T T T 30 T T T T T
—ICP: TRE (Positions) ——IMLOP: TRE (Positions)
ar —ICP: Avg Distance Between Final Matches = —IMLOP: Avg Distance Between Final Matches
g 20+ : g fg 20+ i : B
g 15 Widely distributed TRE follows 1 g 3 <h d p— sl =
S drop in residual error 1 5ol IR CIRe[s I GCCOMPANIESICIODY |
in residual error
5 FVLNW E B 5 i -
0 — 05
0 50 1 250 300 100 250 300
Reg//'atlon Trials Sorted by TRE (Posmons) Reg atlon Trials Sorted by TRE (Posmons)
50 T 50 T
—— TRE (Orientations) IMLOP TRE ( Onentatlons)
. : : 1 4u IMLOP: Avg Orientation Error of Final Matches
4 \ 3
Q5 4 an
o (=]
P\ : 1/
= of = »ob
o [
i i
10 Z | 10+ 7
\
EIEI I ZEIEI 250 300 U 200 300
Reglstratlon Trials Soned by TRE (Positions) Reglstratlon Trlals Sorted by TRE (Posmons)
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image C ing and C Assisted
Interventions (MICCAI), Boston, October, 2014. (accepted).
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology %
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Generalized IMLOP Results

Extends IMLOP to account for anisotropic measurement error
distributions

— Model orientations with Kent distributions

— Model positions with Gaussian distributions
* Simulation results for 50 samples shown below
ICP == === =====——7"7"

IMLOP ~
MLOP. -~ ~

TRE (mm)
T
(0}
i

S. Billings and R. Taylor, "Generalized Iterative Most-Likely Oriented Point (G-IMLOP) Regi
Radiology and Surgery, 8(10) p.1213-1226, 2015.
Copyright 2021 R. H. Taylor

ion", Int. J. Computer Assisted

Engineering Research Center for Computer Integrated Surgical Systems and Technology % SN J
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Experiments: TRE for Rejected and Non-Rejected
Registrations
a 50 T T T ; T 1 1 T
c40- ICP Il Accepted Outcomes|-
30 I Rejected Outcomes ||
=20
=10+
o . . .
b 50 : : :
—
240 IMLOP
~ |
P 30
© 20
= 10
0! — T— — 1 TI— -
C 50 — — . .
—
sS40 G-IMLOP ]
~
P 30
© 20
=10
0 L 1 L L L L L L 1 L TR
= N W O O N o = N W o1 & N o ™
N O N N O N N O N N O N
a a a (S} o o [$3] [$3]
TRE (mm)
[s. Billings and R. Taylor, "Generalized lterative Most-Likely Oriented Point (G-IMLOP) Registration”, Int. J. Computer Assisted Radiology and Surgery, p. Accepted 2015.
=X
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology % ",'
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Ultrasound-assisted Registration

PRESS SELECT TO COLLECT POINT 6

<
<€

(2) Digitize proximal bon¢
using tracked pointer

(3) Collect tracked US

(1) Generate images of distal bone

surface model from
CT

(4) Register points/contours to surface model

| | | 3
-

© 2
o

4
b [

0y o 0 S~ - N o

IRt

s. Billings, H. J. Kang, A. Cheng, E. Boctor, P. Kazanzides, and R. Taylor, "Minimally invasive registration for computer-assisted orthopedic surgery: combining tracked
ultrasound and bone surface points via the P-IMLOP algorithm", Int. J. Computer Assisted Radiology and Surgery, p. (epub ahead of print), 2015

Engineering Research Center for Computer Integrated Surgical Systems and Technology

http://dx.doi.org/10.1007/511548-015-1188-2 DOI 10.1007/511548-015-1188-2 - |
Copyright 2021 R. H. Taylor m, W
V
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Intensity-based methods

Optimization
ol Process

p*=argmin E(Im 1, ©(p,Im 2)

p*

o(p,)

A
|
L

Copyright 2021 R. H. Taylor

U =5
i W'D

Engineering Research Center for Computer Integrated Surgical Systems and Technology
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Intensity-based methods

* Typically performed between images

* The “features” in this case are the intensities associated
with pixels (2D) or voxels (3D) in the images.

* General framework:
p* =min E(Image1,@(ﬁ,lmage2))
P

* Methods differ mostly in choice of transformation function
O(-) and Energy function E(-,-),

X =
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,

81

Typical energy functions
(not an exhaustive list)

Normalized image subtraction
i f-im
k = -
max(‘lm1 M —Im, [/”)
J
Normalized cross correlation (NCC)

Z;(|m1 {E]favg(lm1))(|m2m7avg(|m2))

Mutual information
- E(m,Im,)=" " Pr(p,q)logPr(p,q)—Pr, (p)logPr, (p)—Pr, (q)logPr, (q)

pelm, gelm,

E(m,Im,)=>"

E(lm,,Im,)=

i ¥ ==
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, @) ;’
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Mutual Information

* First proposed independently in 1995 by Collignon and Viola
& Wells.

* Very widely practiced

* |s able to co-register images with very different sensor

modalities so long as there is a stable relationship between
intensities in one modality with those in another

* Many “flavors” and variations

i ¥ =]
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, ) J

Mutual Information

., * The key idea is that the values of pixels in
o one image can predict the values of the
L pixels in the other image, even if the
o -7 images come from different sensors
o °., * The strength of this prediction will
° . increase as the images become better
o -~ o aligned

Image 1

Image 2

i ¥ ==
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m, @) ;’
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Image 1

Mutual Information

, * The key idea is that the values of pixels in
o, one image can predict the values of the
° _'/ pixels in the other image, even if the
images come from different sensors
. * The strength of this prediction will
’ increase as the images become better
aligned

Image 2

Copyright 2021 R. H. Taylor

O
Engineering Research Center for Computer Integrated Surgical Systems and Technology m, S J
85
Mutual Information
, * The key idea is that the values of pixels in
/" one image can predict the values of the
o ot pixels in the other image, even if the
g e images come from different sensors
7/
g /“ * The strength of this prediction will
- " increase as the images become better
s .
e ° aligned
4
2
Image 2
) O
Copyright 2021 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬁ, @) ;’
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Mutual Information

Entropy
H(a) =Pr(a) logPr(a)
H(a,b) =Pr(a,b) logPr(a,b)
Mutual Information (Viola & Wells '95, Colligen '95)
Similarity(A,B) = H(A)+ H(B)— H(A,B)
Normalized mutual information (Maes et al. '97)
Similarity(A.B) = 1A+ H(B)
H(A,B)
Objective function
E(Im,,Im,) = —Similarity(Im,,Im,)

Copyright 2021 R. H. Taylor

Center for C Surgical Systems and Technology % ‘},’
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Basic Idea of Intensity-Based 2D/3D Registration

e Assumes a pre-op CT is available

* Simulate many C-Arm images and choose the most similar to the intraoperative
image

* Solves the following optimization problem:

argmin S(Iyira-op, P(0, IcT))
6eSE()

Do these look
the same yet?

Slide credit: Robert Grupp

Copyright 2021 R. H. Taylor

Center for C Surgical Systems and Technology
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Rigid 3D/2D Registration

Ofri Sadowsky

Optimizer: Downhill Simplex

Prior CT

Simulated
images

Estimated . 4
. Predict ’
é position and .
X R images
orientation

Patient images

measure
(M)

Patient under

fluoroscopy — Examples: LaRose,
Zollei, ...
. ) =Y
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology ) J
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ciis BSS

A clinical example (periacetublar osteotomy)

Problem: Acetabular Dysplasia

Dislocation Caused B

Femur
Shallow

head >
\\ Hip socket deformed\ \\ hip socket

{
|

Normal hip bones Hip dysplasia

Image Source: ouh.nhs.uk Image Source: James Heilman, MD
Slide credit: Robert Grupp P
Copyright 2021 R. H. Taylor i i Center for C Surgical ® =)
gical Systems and Technology )
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A clinical example (periacetublar osteotomy)

One Solution: Periacetabular Osteotomy (PAO)

Image Source: Ganz 1988

. . =
Copyright 2021 R. H. Taylor Slide Crem&m@ﬁts@'mmer for Computer Integrated Surgical Systems and Technology %
ciis

A clinical example (periacetublar osteotomy)

Goal: Automatic visualization and guidance

Total Rotation: 20.5°
Anterior/Posterior Rotation: 3.7°
Left/Right Rotation: 16.3°
Inferior/Superior Rotation: 12.5°
Slide credit: Robert Grupp

) =]
Copyright 2021 R. H. Taylor ineeri Center for Ct Surgical Systems and Technology @)
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Movement of the Osteotomy Fragment is Challenging

Slide credit: Robert Grupp

. . N
Copyright 2021 R. H. Taylor ineeri Center for C: Surgical Systems and Technology ) )
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One Approach for Computer-Assistance: Optical Tracking
Devices
Copyright 2021 R. H. Taylor - Conter for G m;‘:;:::::::ﬁ:ﬁ:‘;:v % O
95
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Intraoperative Fluoroscopy is Available

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp o=

Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology R}
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Intraoperative X-Ray Imaging with Mobile C-Arm

X-Ray Images

X-Ray Source

C-Arm Image Source: Siemens CIOS Fusion Manual Chapter 4: Pose Estimation Using Fluoroscopy
Slide credit: Robert Gru
) PP o=
Copyright 2021 R. H. Taylor ineeri Center for C¢ Surgical Systems and Technology BN
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Proposed Workflow

Osteotomies Performed
Patient CT

Fragment Shape (3D)

Estimate Fragment Pose with 2D/3D Registration

- No
Estimate Femoral

Head Coverage
and Biomechanics

Biomechanics
Acceptable?

Fix Fragment

Chapter 4: Pose Estimation Using Fluoroscopy
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ciis 3D-2D Registration of Osteotomy Fragments
M N

arg min ZS Im,zpm (et bn)

01,....0NESE(3) oy oyt

Fixed Images
with Moving
Image Edges

Moving Images

Level 0 (0.125), pelvis, 000

R. Grupp, R. Murphy, M. Armand, R. Taylor
Copyright 2021 R. H. Taylor  Slide credit: Robert Grupp
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ciis 3D-2D Registration of Osteotomy Fragments

* Compute the Sobel derivatives in the X and Y directions of the two input images:

VxIi, VxIa, Vyli, Vyl
¢ Compute NCC between the corresponding gradient images:

S(Il,fg) = NCC(Vxh, fog) + NCC(Vth Vy[g)

Fluoro.
VxI Vy Iy Vy I
R. Grupp, R. Murphy, M. Armand, R. Taylor

Copyright 2021 R. H. Taylor  Slide credit: Robert Grupp  gngineering Research Center for Computer Integrated Surgical Systems and Technology $ ) J
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Initialize Using a Nominal AP View?
Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp N —
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Too Many Local Minimal!

Initialization \

SR
W i
SIS LTRRZLAA
(S L2
7 B TIIT73252L 0.95
£ RGP [T AR
Wi s =t
LA = &
[] LIAL)
£ i)
3, ¢ uﬁyﬂ%gh”' %
Objective Ill" '
Function Value

06
Translation vi
Component
s of Screw

Rotation
Component
s of Screw

Ground Truth

Chapter 4: Pose Estimation Using Fluoroscopy
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Use a Single Landmark to Initialize Registration

* Assume the pelvis is in an AP orientation — this may be
computed preoperatively
* Manually annotate a single landmark to recover translation

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp
Copyright 2021 R. H. Taylor ineeri Center for C: Surgical Systems and Technology %
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Example of a Single Landmark Initialization

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp

) ) =Y
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology SNV

Automatically Initialize Second and Third Views

Constrain C-arm motion to orbital rotation

Perform an exhaustive search over +90° in 1° increments

Simulated C-Arm X-Ray Flat Panel Detector Trajectory

Patient

A

Simulated C-Arm X-Ray Source Trajectory

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp 0 =X
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology g
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Example Initializations From Orbital Search

View #2 View #3

Level O (0.125), Pelvis2, 000

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp =
o
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Automatic Landmark-Based Initialization

* Train a CNN to recognize
approximate landmark positions in
X-ray images

* Use landmark-based 2D-3D
registration to initialize registration

* Combine landmark and intensity
objective functions

* Use segmentation labels to ignore
intensities of irrelevant anatomy

Images: Robert Grupp

) 0),=
Copyright 2021 R. H. Taylor ineeri Center for C Surgical Systems and Technology
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Why Not Simultaneously Use Intensities and Features?

* Registration objective function:

AS (P (0p,0Lp,0rF), 1)+ (1 =N R (9p,0LF,0rF)

min
0p.0Lr,0rFESE(3)

Image Similarity Term Regularization Term

* Usually, regularization penalizes the amount of rotation and
translation away from initialization

*  Why not directly include the landmark re-projection as
regularization?

1 & 1 O
R0 = ke 3517 o) 4

* Can also think of this as running landmark registration and

reg u I ad ri Zl ng on | m age a p pe arance Chapter 6: Automatic and Robust Registration
ide cred O ,E:
Copyright 2021 R. H. Taylor  Slide credit: Robert Grupp ineeri Center for Ct Surgical Systems and Technology % @R
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Include Landmark Reprojection Into Objective Function

* Landmarks Detected in 2D
are Shown as Cyan Circles

* Landmarks Projected from
3D are Shown as Cyan
Asterisks *

* Cyan Lines Indicate
Correspondence

* The Initial Pose Aligns the 2D
and 3D Left Femoral Head

Centers ével O (0.125), Peivis1, 000

Chapter 6: Automatic and Robust Registration
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Objective Function When Combining Landmark Re-
Projection

Initialization \

Line between initialization and ground
truth is the SE(3) screw motion

Obijective
Function Value

06 !

T
X 08 T~ : Rotation
Translation 11 Component
Component s of Screw
s of Screw
Ground Truth
Chapter 6: Automatic and Robust Registration
Slide credit: Robert Grupp 0=
Copyright 2021 R. H. Taylor ineeri Center for C: Surgical Systems and Technology @R
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