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Feature-Based 2D-3D Registration

Given

— 3D surface model of an
anatomic structure

— Multiple 2D x-ray projection
images taken at known poses
relative to some coordinate
system C

— Initial estimate of the pose F of
the anatomic object relative to
the x-ray imaging coordinate
system C

Goal

— Compute an accurate value for F

. o == |
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Feature-Based 2D-3D Registration

Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology -ﬁ

A contour-based 2D-3D method ...

Gueziec et al., 1998

Step 0: Extract contours from x-ray images and compute corresponding lines between
source and detector

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
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A contour-based 2D-3D method ...

Gueziec et al., 1998

Step 1: Given the current estimate for F = [R,t],
compute the apparent projection contours
of the model for each viewing direction.

Step 2: For each x-ray path line line L;, identify the ;\& /
closest point p; on an apparent projection ‘/(/\
contour. This will give a set of points on the

body surface to be moved toward the

corresponding x-ray lines

10/31/22

Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
o ==
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A contour-based 2D-3D method ...

Gueziec et al., 1998

~
-~

A
Distance d =||(p-€)x V| P

1
\

v (9=

Line direction v

c
Note: It is convenient to use the x-ray source position
(i.e., the center of convergence for a bundle of x-ray

projection lines) as the value for c.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
o O =
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A contour-based 2D-3D method ...

Gueziec et al., 1998
Step 3: Solve an optimization problem to

compute a value of F that minimizes
the distance between the p; and the L.

n;ipgdzzrg Z“v x(c. —(Rp +t))

_m.nZ‘tskew( v,)e (c ~(R®, +t))”

/ Step 4: Iterate s‘teps -3 until reach convergence

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
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Computational Note

Gueziec uses the Cayley parameterization for rotations:
R(U)=(I-skew(t))(+skew(d))

This leads to the approximation
R(u) = I+skew(2u)

which is similar to our familiar R(a) = I+skew(a).

He also uses the notation U=skew(u1). So R(u) = (I-U)(1+U)™

Similarly, we will see V=skew(V), etc.

" (E (=0
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A countour-based 2D-3D method ...
Gueziec et al., 1998

Gueziec compared three different methods for performing
the minimization in Step 3:

— Levenberg Marquardt (LM) nonlinear minimization.
— Linearization and constrained minimization

— Use of a Robust M-Estimator

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'
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Levenberg-Marquardt ...
(Following development in Gueziec et al., 1998)

Define f (X) = Hv (¢, -R(@)p, - E)” where x'=[t',1'],V, = skew(V)

Our goal is to minimize
e 1067 = |v &, -R@p -

We note that g(x) is nonlinear. Levenberg-Marquardt is a widely
used optimization method for problems of this type. However, it requires
us to evaluate the partial derivitives of, / ax/.. Gueziec worked these out

symbolically for his problem

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Levenberg-Marquardt ...
(Following development in Gueziec et al., 1998)

Define £ (X) = Hv (€, -R@)P, - E)” where X' =[i, ']V, = skew(V )

of,
of 3
J = —L . =
{ ox } of
ot

_ﬁ aRp VV(Rp —c+t)
u f

1

Details on this may be found

in reference [45] of A. Quézigc, P. Kazanzides, B. WiIIiamson., and R. Taylor, ”Anatorw—Based )
., Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Gueziec’s paper Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2022 R. H. Taylor
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Levenberg-Marquardt ...
(Following development in Gueziec et al., 1998)
Step 1: Pick A = a small number; pick initial guess for x
Step 2: Evaluate f,(x) and J and solve the least squares problem

I+ AAX - JF |=|0

for AX.

Step 3: X « X +AX; update A.

Step 4: Evaluate termination condition. If not done, go back to
to step 2

Note: Usually A starts small and grows larger. Consult standard
references (e.g., Numerical Recipes) for more information.

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2022 R. H. Taylor
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Step 0:
Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Copyright 2022 R. H. Taylor

Constrained Linearized Least Squares ...
(Following development in Gueziec et al., 1998)
Make an initial guess for R and t
Compute p, < Rp, +t
Define P, = skew(p,), V. = skew(V,)
Solve the least squares problem:
2

£=min 2\}in V, { Aﬂi }_ Vi(éi._ﬁi) subject to "ﬁ"Sp

where p is sufficiently small so that I+2U approximates a rotation
Compute AR = (I-U)(I1+U)™
Update p, < ARp, + At; R <~ ARR; t < ARt + At
If £ is small enough or some othe termination condition is met,
then stop. Otherwise go back to Step 2.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based

Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
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* Basicidea is to identify R
outliers and give them little g ¥ ! \
or no weight. **'*-x} J’* \
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Robust Pose Estimation ...

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-I1U,
vol. 60, no. 3, pp. 313-342, 1994.
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Robust Pose Estimation ...

* Basic idea is to identify R
outliers and give them little Heate 1 \\
or no weight. iy I
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Outliers .

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,

Copyright 2022 R. H. Taylor
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vol. 60, no. 3, pp. 313-342, 1994.
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Robust Pose Estimation ...

* Basicidea is to identify N
outliers and give them little

L3 \
or no weight. e " *} \
3 1
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R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-I1U,
vol. 60, no. 3, pp. 313-342, 1994.
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Robust Pose Estimation ...
* Basic idea is to identify
outliers and give them little
or no weight.

.
.

.
.

vol. 60, no. 3, pp. 313-342, 1994.
Copyright 2022 R. H. Taylor

h Center for C

Engineering

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,

o ==
Surgical Systems and Technology m., B 'y'

Outliers
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Robust Pose Estimation ...
* Basic idea is to identify
outliers and give them little
or no weight.

.
.

.
.

vol. 60, no. 3, pp. 313-342, 1994.
Copyright 2022 R. H. Taylor

Outliers excluded \

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-I1U,
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Robust Pose Estimation ...
* Basic idea is to identify ;N
. . . . \
outliers and give them little 2 / \
or no weight. 3% Lz ! Y
e ' \
¥ 1 ‘l
ﬁ 3. ™ | l
*Q; l !
*. 1 |
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Outliers excluded .
R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU,
vol. 60, no. 3, pp. 313-342, 1994. —_ S
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology m’
23
Robust Pose Estimation ...
* Basic idea is to identify N
. . . ¥ /7
outliers and give them little / \
or no weight. *;,-ﬁ " %y
\
e I |
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Outliers excluded .
R. Kumar and A. R. Hanson, “Robust methods for estimating pose and
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-I1U,
vol. 60, no. 3, pp. 313-342, 1994. - w_—
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Step 0:
Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'

Robust M-Estimator ...

(Following development in Gueziec et al., 1998)

Make an initial guess for R and t
Compute p. < Rp, +

Define P = skew(p,), V, = skew(V,),
Solve a robust linearized problem

[ 0.6745 e,

g=argmin p median(e )

j where ei=HVi(E)i —-c,+2Pu+ AE)H
u,At i

(See next slide)

Compute AR = (I-U)(1+U)™

Update p, < ARp, + At; R < ARR; <« ARt +At

If € is small enough or some othe termination condition is met,

then stop. Otherwise go back to Step 2.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based

Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

25

Step 3.0:
Step 3.1:

Step 3.2:

Step 3.3:

Copyright 2022 R. H.

Robust M-Estimator ...
(Following development in Gueziec et al., 1998)
Seti=0, At=0
Compute e, = ‘ ‘V,-(IB,- —-C, +2Pu+ AE)‘ ‘ s= median({- 8, -}) 10.6745,

Solve Cx=d, where X' =[u, ']

€ ) 2P WP,
~ s

_ & PW il & PW(c,-p)
C =) ¥( W W ]andd Z‘P(S)[ WE ) }

2
where W = V'V = 1-vv ! =] H(1=110?) [l <e
0  otherwise
(Note: We use a=2)
Iterate steps 3.1 and 3.2 until a suitable termination condition
is reached.

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

—_ |
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A countour-based 2D-3D method ... results

Gueziec et al., 1998

After

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
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A countour-based 2D-3D method ... results
Gueziec et al., 1998

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Engineering

Error vs noise and outliers
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A contour-based 2D-3D method ... times

Gueziec et al., 1998

TABLE I
AVERAGE EXECTUTION TIMES IN MS FOR THE THREE
ReGISTRATION METHODS APPLIED TO DaTA SETS THAT
Conmprise 100 Poinrs (Tor) anp 20 Points (BorTon)

Number Pomnts/Method M Linear Robust

100 points (CPU time) 790 690 28
20 points (CPU tme) 200 42 96

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-Based
Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical
Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Copyright 2022 R. H. Taylor
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Sample Set Analysis
* Question: How good is a particular set of 3D sample points for
the purpose of registration to a 3D surface?
* Long line of authors have looked at this question
* Next few slides are based on the work of David Simon, et al
(1995)
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology $
33
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Sample Set Selection

) )y
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology S

Sample Set Analysis: Distance Estimates

Let

F(x)=0
be the implicit equation of a surface, then one good esti-
mate of the distance of a point x to the surface is

) 0)
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology
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Sample set analysis: sensitivity

Let x, be a point on the surface, and let 7'(7) represent
a small perturbation with parameters 77 with respect to
the surface of point x;:

Then we define V(x;) to be

_ 0D(T(m)xs) _
= “aﬁ =
where ny, is the unit normal to the surface at x,. So,

D(T(m)x,)) ~ VT (x)7

g

Vix) X X I

Squaring this gives
DZ(T(W)XS)) =~ ﬁTV(xs}VT(xs)ﬁ
= 7 M(x,)7

Note that M is 6 x 6 positive, semi-definite, symmetric
matrix.

< F ==
cngmeen g wener surgiear systems and Technology m., B 'y'
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Sample set analysis: sensitivity
For a region R, define

Er(m) = 7"

> M(xs)} 5

XsER
= 7' gy
= 77QAQTY
= X AN )
e Note that the eigenvectors q; correspond to small dif-

ferential transformations T(q;). and can sort eigen-
values so that

A A= 2 )
o Note that eigenvector q; corresponds to direction of
greatest constraint.

o Similarly, can also think of g as the least constrained
direction.

=N
chnology -53-

37
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Sample Set Analysis: Goodness Measures

e Magnitude of smallest eigenvalue (Simon)

¢ (Kim and Khosla)

6
TN
) VNERE
e Nahvi

A 2

76

M
) ¥ =
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m-,
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Sample Set Selection

* One blind search method (similar to Simon, 1995) is:

— Randomly select sample points on surface
— (prune for reachability)
— evaluate goodness of sample set using some criterion

— repeat many times and choose the best one found

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Sample Set Selection

* Refinement of blind search (hill climbing):

Randomly select sample points on surface
(prune for reachability)

evaluate goodness of sample set using some criterion

— replace a point from sample set with a randomly selected
point

evaluate goodness

if better, keep it

else revert to original point and try again

* Variations include simulated annealing, “genetic” algorithms

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'
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Sample Set Selection: Another Alternative

o Select large number of random points X;
¢ Prune for reachability

e For each point, compute constraint direction V; =
V(x;). To a first approximation, a measurement at
x; with accuracy €, constrains 7j by

!Vs'ﬁl <&
o Now select subset of the x; that minimizes, e.g.,
Hgn max 7’ S
subject to

{6; € {0,1}
|58Vsﬁl < €
Y <

There are various ways to do this.

subsetsize

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb
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Sample Set Selection: Another Alternative (con’d)

e One can also minimize other forms, e.g.,
min max |7
l
subject to similar constraints

e An alternative is to minimize the number of sample
points required to ensure that some constraints on 77
are guaranteed to be met. E.g..

n%in > 6
such that
§; € {0,1}
& < Gimit
where

= m%a.xﬁTSﬁ
or some other form subject to

[0:Vsm| < €

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m., B 'y'
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Probabilistic Registration

* Registration methods typically use some optimization
algorithm to find a “best” transformation between one data
set and the other.

* It makes sense to try to find the “most likely” registration
transformation.

* ICP minimizes sum-of-squares distances.

* This is equivalent to assuming that point-pair match
probabilities are independent and symmetric Gaussian
distributions based on distances

* But there are a number of other methods that explicitly
consider probabilities ...

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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¢ A. Myronenko and X. Song, "Point-Set Registration:

Coherent Point Drift

Coherent Point Drift", IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 32- 12, pp. 2262-2275, 2010.

e Alignment of point clouds
— Fast method follows “EM” paradigm

— Tolerates outliers and noise
— Transformations: Rigid, affine, general deformable
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Registration of intraoperative data to preoperative models
Range Imager

* Want to know registration from tracker to
CT space Optical @
Tracker  Fg
Y

— Provides tool positions relative to CT

* Data sources for registration
— Tracked ultrasound l/7
— Tracked (or calibrated) range data 'l
1 For
@ D i 2
Co-Register H
! b

= o
e nl

A
g 08 =
cT D Ultrasound

Ultrasound
Patient Imaging

and Ce

q

Q

Medical Image Computi

Interventions (MICCAI), Boston, October, 2014. (accepted).

Copyright 2022 R. H. Taylor
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S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in
=Y
Engineering Research Center for Computer Integrated Surgical Systems and Technology
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Multi-Modal Feature-Based Registration

Question: How to combine multiple data sources, in order to improve the
accuracy and robustness of registration outcomes?

TOF *ﬁ/m&n

Camera
Optical
Feature-Based ‘ Tracker —
CT,Trk .
[ 27 Frus Intensity-Based
us 6 Slice Ultrasound Volume:

CT Image Patient

Billings S, Kapoor A, Keil M, Wood BJ, Boctor E (2011) A Hybrid Surface/Image-Based Approach to Facilitate
Ultrasound/CT Registration. SPIE, Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy 7968:
79680V-79680V-12

47

Example: Clear Guide Medical Navigation System

« Handheld device:
— low cost
— integrated on probe
— ease of use
— no workflow interruptions
— in-situ guidance
— no tool calibration
— no sterility issues
— high accuracy
— real-time fusion
— real-time quality control

) 0N
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology -5
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Easy-to-Follow Guidance

» CG-1 has traditional ultrasound screen AND
on-screen guidance overlay

Copyright 2022 R. H. Tayl \
opyright . H. Taylor Engineering h Center for C Surgical Systems and Technology m’ S 'y'
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Real-time Multi-modal Fusion

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m) B
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Multi-Modal Feature-Based Registration

Question:  How to combine multiple data sources, in order to improve the
accuracy and robustness of registration outcomes?

Ultrasound US Vessels
.2
Pre.0p CT Vessel Model
CT Surface :
Model Video

oF

Range Imaging Tracked Pointer

Billings S, Kapoor A, Keil M, Wood BJ, Boctor E (2011) A Hybrid Surface/Image-Based Approach to Facilitate Ultrasound/CT Registration. In: SPIE,
Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy

Multi-Modal Feature-Based Registration

Question:  How to combine multiple data sources, in order to improve the
accuracy and robustness of registration outcomes?

Ultrasound\ / u
Features

Video Features

~—|..F

o0 ®
Range Imaging
Tracked
Pointer
0)
Copyright 2022 R. H. Taylor Credit: Seth Billi ineering Center for C Surgical Systems and Technology %
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Iterative Closest Point (ICP) Revisited

Widely popular and useful method for point cloud to surface
registration introduced by Besl & McKay in 1992

Many variants proposed since its inception affecting all aspects
of the algorithm (robustness, matching criteria, match
alignment, etc.)

» Matching Phase:
for each point in the source shape, find the closest

point on the target shape

yi = Cep(T(x;),¥) = argnéiﬂ ly —T(x:)ll2

ye
> Registration Phase:
compute transformation to minimize sum of square TREG o
. o
distances between matches 3 ° ____ 3
n ° 4} °, ®
. 2 2
T= argmlnz ly: — T'(xs)|5 o .®
T i1 1
i=
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in dical Image C ing and Comp Assisted
Interventions (MICCAI), Boston, October, 2014. —
Copyright 2022 R. H. Taylor Credit: Seth Billii ing h Center for C Surgical Systems and Technology m., .'y'
53

Most-Likely Point Paradigm lllustrated with ICP

1. Probability Model: isotropic Gaussian

2 1 — L ly—x|2
fmatch(xlyvo' ): W e 202 [y —x]|

Yi = argmax fumtch(T(xi) ‘ Yi, (72)
yi€EV

2. Match Phase:

T
— argmax ——___ . e~ mrIi=TC]
view (2mo?)%

— argmin ||y; — T(x;)]|
yi €W

3. Registration Phase: T = argIna.xH Fmaten(T(x:) |y, 02)
T

n
1 L 2
— oz lyi =T (=)l
arg'ITIlaX 1:[ (27r02)3/2 €

n
N L 2.3/2 1 N
— dl‘gg[{ld.x |:7rLlog, ((271'(7 ) ) ) 21: llyi = T(x)ll

n
—» argmin " ly: - T(xo) P
2 i

Copyright 2022 R. H. Taylor

54

=
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Outline of Registration Algorithms

. . ® e Trec
* ICP - Iterative Closest Point e s = ° °
— isotropic position data ° ° }—) °
T
. | IMLP - Iterative Most Likely Point | @ § ,FEA . ®
- anlsotroplc pOSItIOh data - \2;> ° ‘2\9
— robust to outliers ¢ <
* |IMLOP - Iterative Most Likely Oriented Point J\ " Tres
— isotropic position & orientation data 1 } 3 ?O\
LR NIEN
*  G-IMLOP - Generalized IMLOP
. . . . . } % Tres
- anlsotroplc pOSItIOh & orientation data TQ\—) —

*  P-IMLOP - Projected IMLOP
— anisotropic position & projected orientation data REG
pic p proj @7,\ o
5

WP
0=
Copyright 2022 R. H. Taylor Credit: Seth Billi ineering Center for C Surgical Systems and Technology -ﬁ
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Sources of Anisotropic Uncertainty
Tomographic Imaging
Stereo Vision
Slice thickness 0 ; The Essential Physics of
{elevational) 13/01/1 AB. 0ok,
020022505
‘http://i00.i.aliim; /CT._Scan_equipment.jt
0)
Copyright 2022 R. H. Taylor Credit: Seth Billii ineering Center for C Surgical Systems and Technology @
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Prior Work: Anisotropic Registration

* Generalized Total Least Squares ICP (GTLS-ICP)

Estépar RSJ, Brun A, Westin C-F (2004) Robust generalized total least squares iterative closest point
registration. In: MICCAI 2004

— Registration Phase

* anisotropic noise model

* ad-hoc implementation less accurate / efficient; can be unstable
— Match Phase

* isotropic (i.e. closest-point matching)

* Generalized ICP (G-ICP)

Copyright 2022 R. H. Taylor Credit: Seth Billi

— Registration Phase

* anisotropic noise model limited to model locally-linear surface regions
surrounding each feature point of a point cloud shape

* uses off-the-shelf conjugate gradient solver
— Match Phase
* isotropic (i.e. closest-point matching)

Segal A, Hachnel D, Thrun S (2009) Generalized-ICP. In: Robotics: Science and Systems V

a

ing h Center for C Surgical Systems and Technology
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Copyright 2022 R. H. Taylor Credit: Seth Billings Engineering Research Center for Computer Integrated Surgical Systems and Technology m)

Prior Work: Anisotropic Registration

Anisotropic ICP (A-ICP)

Maier-Hein L, Franz AM, Dos Santos TR, Schmidt M, Fangerau M, et al. (2012) Convergent iterative closest-
point algorithm to accomodate anisotropic and inhomogenous localization error. I[EEE Trans Pattern Anal Mach
Intell 34: 1520-1532.
— Registration Phase
* anisotropic noise model
* ad-hoc implementation does not fully account for noise in both shapes (i.e.,
lacks ability to reorient the data-shape covariances during optimization)
— Match Phase
* anisotropic noise model with non-optimal matching (finds minimal
Mahalanobis distance match rather than most-likely match)
* inefficient implementation; also cannot guarantee that the “best” match is
found

— Initializes registration by ICP (due to inefficient match phase)

59
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Iterative Most Likely Point (IMLP)

Probability Model: anisotropic Gaussian

_ 1 o ST (EA D) Ty —x)
fmatch(xlnyX‘Z}’) - (27T)3/2|2x +2y|1/2 €’ y

Match Phase: (i)
o v

)

+ (vi — T(x)) " (REGR" + 2y0) ' (yi — T(x1))

[yi, Xyi] = argmin {log(‘REmRT + Xy
[yi:Zy]ew

Registration Phase: {xi}

Billings SD, Boctor EM, Taylor RH (2015) Iterative Most-Likely Point Registration (IMLP): A Robust Algorithm for
Computing Optimal Shape Alignment. PLoS One 10: e0117688

60
IMLP: Match Phase yi??
Xi
[ ]
* Due to anisotropic distance metric, standard KD-tree search techniques
do not apply.
* Approach: PD-tree search with modified node test
Constructing the PD tree:
1. Add all datums to a root node
2. Compute covariance of datum positions within the node
3. Create minimally-sized bounding box aligned to the
covariance eigenvectors
4. Partition node along the direction of greatest extent
5. Form left and right child nodes from the datums in each
partition
PD Tree Constructed 6. Repeat from Step 2 for left and right child nodes until #
by Datum Positions datums in node < threshold or node size < threshold
Copyright 2022 R. H. Taylor Credit: Seth Billii ineering Center for C Surgical Systems and Technology %
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IMLP: Match Phase y?

Xi
Searching the PD tree:

Assume the current match candidate has a match error

equal to Epest

can any feature in this node possibly provide a
match error less than Epest?

[yi, 2y = argmin {l()g(ﬁREmRT + 3y
[yi.Zyilew

+ (yi = Tx) " REGR™ + 2,) " (ys — T(xs))

£ (yi — T(x:))"(RER” + Brnode) "' (yi — T(%1)) < Ebest — 10gmin

Node Test: if the ellipsoid

Node of the PD Tree

&= {y ‘ (y - T(Xi))T(REXiRT + E11c>de)71(y - T(X’L)) ST lOgmin}

intersects the bounding box of the node, then search the node

. =X
Copyright 2022 R. H. Taylor Credit: Seth Billii i ing h Center for C Surgical Systems and Technology
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IMLP: Match Phase yi??

Xi
Searching the PD tree:

Assume the current match candidate has a match error
equal to Epest

can any feature in this node possibly provide a
match error less than Epest?

)

+ (yi = T(x) (REGRT + By0) ™ (s — T(x) )}

vi, Xyi] = argmin {l()g(FREXLRT + Xy

yo.Zy ) ew

&£ (yi — T(x2))" (RER” + Znode) (i — T(x:)) < Ebest — [0gmin

Details in Billings’ Thesis

Node Test: if the ellipsoid \

- AN
E={y | (y = T(x:))" (RER" + Bnoae) "' (y — T(x1)) < Ebest L\zog,.,i,,,}»

-—-

Node of the PD Tree

intersects the bounding box of the node, then search the node

Copyright 2022 R. H. Taylor Credit: Seth BillingEngineering Research Center for Computer Integrated Surgical Systems and Technology $
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{xi} {yi}
. H 1 o o T
IMLP: Registration Phase Rt

1. Re-formulate the cost function from an unconstrained optimization
n

T = argmin
Rt ;

(yi —Rx; — t)"(RE R" + Zy’i)il(yi - Rx; —t)

to a constrained optimization
n

n
T= argminZ(x; — xS (% — %) + Z(y; -y = iy
Rt 5 i=1
subject to:  Fy(x/,y/,R,t) =y —Rx/—t=0

xi* - true (unknown) data-point position
yi* - true (unknown) model-point position

2. Linearize the constraints with a Taylor series centered at the measured (known) data

FZ(X;? yi*? R‘f t) ~ F]‘ii(xiﬁ Yis d()é, dt )
= F(x;, ¥ R, tr) — ryi + Ryry; + skew(Ryx;)da — dt = 0

Note using: AR =~ I + skew(da) Iy = X — X' ry = yi— yj*

h Center for C Surgical Systems and Technology @

Copyright 2022 R. H. Taylor Credit: Seth Billi " ing

64

IMLP: Registration Phase

3. Apply the method of Lagrange multipliers to solve constrained optimization.

3a. Form the Lagrange function using the linearized constraints
n n n
L(da,dt, \) = Z Tt + Z Ty S Ty + Z A Fri(xi, yi, da, dt )
i=1 i=1 i=1
3b. Solve zero gradient w.r.t. the optimization parameters and the Lagrange multipliers

J'EJdp = —J7u7 '

r £ skew(Ryxy) -1
da
dp = ERSH Y = : 2= [FEZ\F?'JrE\J
dt
N £ skew(Ryx,) -1
-Ry Sa o
F) = s = 5 =
-Ry >IN P

4. Iteratively solve 3b by linear least squares until convergence.

Rpy1 = R(do)Ry,  tp =t +dt

Copyright 2022 R. H. Taylor

'5 =Y
Credit: Seth Billingéngineering Research Center for Computer Integrated Surgical Systems and Technology
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IMLP: Experiments Credit: Seth Billings
e Data Shape: 100 noisy points + outliers simulated from a mesh model of a human hip
e Model Shape: point-cloud formed from the center points of the mesh triangles
e Random initial misalignments [30,60] mm and [30,60] degrees
e Target registration error (TRE) averaged over 300 randomized trials for each test case
100 . A I icP B
B cicP
[ Robust ICP
50. Il cPD
Yy [ IMLP E
‘ E
0 w
g
-50
100 B, 1.2 3 4 5 6 7 8 9
507 4 'u,g.;,i o] Test Case D Test Case
U TR 7
e 6 J s{ PR TS P
Average Runtime (sec.) by Test Case
Alg 1 2 3 4 5 6 7 8 9
1ICP 0.009 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009
IMLP-CP 0.015 0.016 0.019 0.016 0.020 0.019 0.015 0.017 0.015
IMLP-MD 0.068 0.078 0.093 0.079 0.097 0.093 0.067 0.079 0.069
GICP - - - - - - - - -
CPD (2 cores) 3.465 4.346 4.336 3.864 4.340 4.374 4.238 4.650 4.484
IMLP 0.068 0.082 0.102 0.078 0.103 0.099 0.067 0.084 0.073
67
H Credit: Seth Billings
IMLP: Experiments
¢ Data Shape: 100 noisy points simulated from a mesh model of a human femur
¢ Model Shape: point-cloud formed from the center points of the mesh triangles
¢ Random initial misalignments [10,20] mm and [10,20] degrees
* Target registration error (TRE) averaged over 300 randomized trials for each test case
Ao ' ‘ ' ' ‘ '
_ g |IHicP
w0 | i [ IMLP-CP
R [ IMLP-MD|
2] S = 3t [ GicP
i g Il cPD
04 s 4 = ) = IMLP
20| .:/": Sis g
40 r 1k :
60 L ,/[;'20 l
40 ﬁ‘;*zo 0
1 2 3 4 5 6 7
Test Case
Alg. Failure Rate (%) by Test Case
1 2 3 4 5 6 7
icP 15.0 107 17.3 137 147 187 163
IMLP-CP 47 2 53 43 43 43 4.0
IMLP-MD 6.0 33 7.3 53 7.0 67 5.3
GicP 6.0 43 83 6.3 6.0 53 47]
cPD 00 00 00 0.0 00 03 0.3
iMLP 6.0 30 7.0 5.0 6.0 6.3 5.0
68
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Credit: Seth Billings

IMLP: Experiments

Fig 9. Registration of shapes having partial overlap. (Experiment 7). (A): The statue Laurana sub-divided into (B): front and (C): right half-sections, such
that (D): a 50% overlap exists between the two sub-shapes. The sub-shapes were (E): misaligned by 10 mm and 10 degrees in a random direction and then
registered using (F): CPD [20], (G): GICP [11], and (H): the proposed IMLP algorithm. Sub-figures (E-H) show the initial misalignment and the final registered
alignments of the two shapes for the 6th randomized trial of Experiment 7, which involved 10 randomized trials in total.

101371 0117688,0009

69

Iterative Most Likely Oriented Point °}
(IMLOP)

7

» Matching Phase:
for each oriented point in the source shape, find the
most likely oriented point on the target shape
yi = Carp(T(x:), V) = argmax fiawen(T(x4), y)
yew

> Registration Phase:

compute transformation to maximize the likelihood
(i.e. minimize negative log-likelihood) of oriented
point matches R Treg 5

o2,

» 5 gV

. 1 — ‘ n %
T = argmin (g PIRERICHIEENDS y}?a:) g L
i=1 i=1

S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Regi ion", in Medical Image Computing and Comp Assisted
Interventions (MICCAI), Boston, October, 2014. ®
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Sources of Orientation Data

Tracked Pointer Oriented Fiducials m

force/torque
sensor

Figures: ndigital 013/09/4c0l polarisvicral pne; The Essential Physics of Medical Imaging, 3/ ed.; infotech ed 013/0I/LAE:
CALBgby- Tests 5 igns by - b0 2100 alii ; bitg 2iz ; Liu X, Cevikalp
H, Fitzpatrick JM {2003) Marker orientation in fiducial registration. In: Sonka M, Fitzpatrick M, editors. SPIE, Medical (maging 2003: Tmage Processing. Vol. 5032. pp. 1176-1185.
. 0=
Copyright 2022 R. H. Taylor Credit: Seth Billi ineering Center for C Surgical Systems and Technology B
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Experiments

Performance comparison of IMLOP vs. ICP was made through a simulation study using a
human femur surface mesh segmented from CT imaging.

* source shape created by randomly sampling points from the
mesh surface (10, 20, 35, 50, 75, and 100 points tested)

* Gaussian [wrapped Gaussian] noise added to the source
points (0, 0.5, 1.0, and 2.0 mm [degrees] tested)

* Applied random misalignment of [10,20] mm / degrees
* 300 trials performed for each sample size / noise level

* Registration accuracy (TRE) evaluated using 100 validation
points randomly sampled from the mesh

* Registration failures automatically detected using threshold
on final residual match errors

Example source point cloud
sampled from dark region of
target mesh.

ICP: threshold on position residuals only
IMLOP: threshold on position & orientation residuals
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Regi ion", in Medical Image Comp and Comp Assisted
Interventions (MICCAI), Boston, October, 2014. °
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Noise Case: 1 mm/degree
A,

100

4 ——Avg TRE of Successful Registratons: ICP
—e—Avg TRE of Successful Registratons: IMLOP
—-&-Registration Fail Rate: ICP

—&-Registration Fail Rate: IMLOP

Average TRE of successful
registrations and registration
failure rates across all sample
sizes for noise levels of 1 (A) and
2 (B) mm [degrees].

o
=
T
5
8

L
3
3

Registration TRE (mm)
Registration Fail Rate (%)

Registration failure threshold set
to twice the noise level for both

i L i
10 20 30 40 50 60 70 80 90 100

position and orientation. Source Shape Sample Size
Noise Case: 2 mm/degrees
B 10, T T . : : : T : 100
—— Avg TRE of Successful Registrations: ICP

—e—Avg TRE of Successful Registrations: IMLOP 3

g -&-Registration Fail Rate: ICP I~ <

£ —e&-Registration Fail Rate: IMLOP =

W [+

o : B 0 =

[ (=

P w

o S

] 40 -g

= ©

® =

k=) 2

v 20 5

e 3

10 20 30 40 50 B0 70 80 90 100
Source Shape Sample Size
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in dical Image C ing and Comp Assisted
Interventions (MICCAI), Boson, October, 2014. (accepted).
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology %5
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Experiments

Results from 300 trials within a single sample size (75 points) and noise level (1.0 mm
[degree]). NOTE: improved accuracy and failure detection capability for IMLOP.

ICP IMLOP
30 T T T T T 30 T T T T
——ICP: TRE (Positions) ——IMLOP: TRE (Positions)
=r —ICP: Avg Distance Between Final Matches A —IMLOP: Avg Distance Between Final Matches
’gZD ’é?ﬂ
E ) - £
5T Widely distributed TRE follows 15" [ p——, es d 1
5ol drop in residual error 1 &l S Ay Cle i CEEMEIIES Clie
in residual error

5

0

sl
w\:\:\ﬁ/rL - L,
a 50 100 150 200 250 300 0 50 100 150 200 250 300
Regj fration Trials Sorted by TRE (Positions) Regi/ fration Trials Sorted by TRE (Positions)

50 [ T T T T
——TRE (Orientations) ﬁwu_op: TRE (Orientations)

=

5

B a0

IMLOP: Avg Orientation Error of Final Matches

I @
o3 1
L sl 4 &} ]
{=2] i=]
o o
A=A hoA
o 20F w 20 .|
g g
] ]
10 10
0 L L 0
a 50 100 150 200 250 300 ) 50 100 150 200 250 300
Registration Trials Sorted by TRE (Positions) Registration Trials Sorted by TRE (Positions)
S. Billings and R. H. Taylor, "Iterative Most Likely Oriented Point Registration", in Medical Image Comp and Comp Assisted
Interventions (MICCAI), Boston, October, 2014. (accepted). =
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology
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Generalized IMLOP Results

* Extends IMLOP to account for anisotropic measurement error
distributions

— Model orientations with Kent distributions
— Model positions with Gaussian distributions
* Simulation results for 50 samples shown below

ICP === === — = o e i ———
12 '
= IMLOP <
£ \\
E 4L GiAMLOP S~
o ~
= SO ~o
0.8} SE. ~
-~
0.6 N R ~ -
0.4l ~

0.2

‘H‘

S. Billings and R. Taylor, "Generalized Iterative Most-Likely Oriented Point (G-IMLOP) Registration", Int. J. Computer Assisted
Radiology and Surgery, 8(10) p.1213-1226, 2015.

X =
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology %
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Experiments: TRE for Rejected and Non-Rejected

Registrations
a 50+ T T T T T 1 T 1 T T ;
£40 - ICP I Accepted Outcomes|
730" I Rejected Outcomes |

T 20 |
=10+ 1

075 000 000 22 sSasaaa A
= N W O & N © = N W o & ~N oo —
N O N N o N N O N N O N
()] ()] ($)] ()] ()] [$)] ($)] ($)]
TRE (mm)
[s. Billings and R. Taylor, "Generalized Iterative Most-Likely Oriented Point (G-IMLOP) Registration”, Int. J. Computer Assisted Radiology and Surgery, p. Accepted 2015.
) =X
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology %
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Ultrasound-assisted Registration

PRESS SELECT TO COLLECT POINT 6

(2) Digitize proximal bon¢
using tracked pointer

(3) Collect tracked US

(1) Generate images of distal bone

surface model from
CT

(4) Register points/contours to surface model

0 3
.
0
0 2
o
=0
0 i
s
0
0 . - L]
%0 50” ’

s. Billings, H. J. Kang, A. Cheng, E. Boctor, P. Kazanzides, and R. Taylor, "Minimally invasive registration for computer-assisted orthopedic surgery: combining tracked
ultrasound and bone surface points via the P-IMLOP algorithm", Int. J. Computer Assisted Radiology and Surgery, p. (epub ahead of print), 2015.
http://dx.doi.org/10.1007/511548-015-1188-z DOI 10.1007/511548-015-1188-2 -

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology
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Intensity-based methods

=Y

Optimization
- === - Process
A p*=argmin E(Im 1, O(p,Im 2)
1
1 |
| I %
p
1
|
|
|
o I
|
e(pl) {
| WS ",‘ |
* oF [
A 7 1
| 1
| |
—— o o o e o e o= ]
i ™
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Intensity-based methods

* Typically performed between images

¢ The “features” in this case are the intensities associated
with pixels (2D) or voxels (3D) in the images.

* General framework:
p*=min E(Image1,@(ﬁ,/magez))
p

* Methods differ mostly in choice of transformation function
O(:) and Energy function E(-,),

=

. ¥
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m.,
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Typical energy functions
(not an exhaustive list)

Normalized image subtraction

m k] 1m, &
m%\x(llm1 M —Im, MD
Normalized cross correlation (NCC)

> (Im [ } avg(Im, ))(Im m—avg(lm ))

\/ > (im[k] - avg(m,) \/Z Im,

Mutual information
‘ E(m,Im,)= > Pr(p.q)logPr(p,q)—Pr,, (p)logPr, (p)—Pr,, (q)logPr, (q)

pelm, qelm,

E(Im,Im,)=>".

E(Im,Im,)=

—avg(lm ))2

Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology m,
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Copyright 2022 R. H. Taylor

Mutual Information

* First proposed independently in 1995 by Collignon and Viola
& Wells.

* Very widely practiced

* Is able to co-register images with very different sensor
modalities so long as there is a stable relationship between
intensities in one modality with those in another

* Many “flavors” and variations

h Center for C

83

o ==
Surgical Systems and Technology m., B 'y'

Image 1

Copyright 2022 R. H. Taylor

Image 2

Mutual Information

The key idea is that the values of pixels in
one image can predict the values of the
pixels in the other image, even if the
images come from different sensors

The strength of this prediction will
increase as the images become better
aligned

= |
Engineering Research Center for Computer Integrated Surgical Systems and Technology ﬂb

84

10/31/22

38



Image 1
[ ]
[ ] \\.

Image 2

Copyright 2022 R. H. Taylor

Engineering

Mutual Information

The key idea is that the values of pixels in
one image can predict the values of the
pixels in the other image, even if the
images come from different sensors

The strength of this prediction will
increase as the images become better
aligned

-
i

h Center for C Surgical Systems and Technology
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Image 1
[ ]

Image 2

Copyright 2022 R. H. Taylor

Mutual Information

= |
Engineering Research Center for Computer Integrated Surgical Systems and Technology m)

The key idea is that the values of pixels in
one image can predict the values of the
pixels in the other image, even if the
images come from different sensors

The strength of this prediction will
increase as the images become better
aligned

86
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Mutual Information

Entropy
H(a) = Pr(a)logPr(a)
H(a,b) =Pr(a,b) logPr(a,b)
Mutual Information (Viola & Wells '95, Colligen '95)
Similarity(A,B) = H(A)+ H(B)— H(A,B)
Normalized mutual information (Maes et al. '97)
Similarity(A,B) = HA) = H(B)
H(A,B)
Objective function
E(Im,,Im,) = —Similarity(Im,,Im,)

X =)
Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology -ﬁ
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Basic Idea of Intensity-Based 2D/3D Registration

* Assumes a pre-op CT is available

* Simulate many C-Arm images and choose the most similar to the intraoperative
image

* Solves the following optimization problem:

argmin S(Iyra-0p, P(8, Io1))

Do these look
the same yet?

Limplated Images, ooo
Slide credit: Robert Grupp

: 0=
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology @
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Rigid 3D/2D Registration

Ofri Sadowsky

Optimizer: Downhill Simplex

Estimated

) position and
orientation

Prior CT

Simulated
images

»

Patient under
fluoroscopy

Copyright 2022 R. H. Taylor

Predict ’ ]
images

Patient images

Similaril
measure

(M)

Examples: LaRose,
Zollei, ...

Center for C

Engineering

0) =N
Surgical Systems and Technology
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Problem: Acetabular Dysplasia

[

Normal hip bones

head
\\ Hip socket deforme

Dislocation Caused by

Femur

,‘,‘\/

Hip dysplasia

Image Source: ouh.nhs.uk

Copyright 2022 R. H. Taylor

BiSS

A clinical example (periacetublar osteotomy)

i \ Femoral Head

Image Source: James Heilman, MD

Slide credit: Robert Grupp

Center for C

Engineering

L == ]

Surgical Systems and Technology
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A clinical example (periacetublar osteotomy)

One Solution: Periacetabular Osteotomy (PAO)

r

Image Source: Ganz 1988

X . L 0=
Copyright 2022 R. H. Taylor Slide Cred‘;inm?ﬁgsgimmer for Computer Integrated Surgical Systems and Technology -5
ciis

A clinical example (periacetublar osteotomy)

Goal: Automatic visualization and guidance

Total Rotation: 20.5°
Anterior/Posterior Rotation: 3.7°
Left/Right Rotation: 16.3°
Inferior/Superior Rotation: 12.5°
Slide credit: Robert Grupp

) 0)
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Movement of the Osteotomy Fragment is Challenging

Slide credit: Robert Grupp

) )y
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology S
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One Approach for Computer-Assistance: Optical Tracking
Devices

Source: Stiehl and Thornberry, 2016

Source: Sugano, CAOS for Hip and Knee, 2018

Slide credit: Robert Grupp

) 0)
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Intraoperative Fluoroscopy is Available

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp 0=

Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology SRy
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Intraoperative X-Ray Imaging with Mobile C-Arm

X-Ray Detector _

X-Ray Images

W

X-Ray Source

C-Arm Image Source: Siemens ClOS Fusion Manual Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp

) 0)
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology
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Proposed Workflow

Fragment is Adjusted

Osteotomies Performed
Patient CT

Estimate Fragment Pose with 2D/3D Registration - No

B

Estimate Femoral
N Head Coverage
o ,',‘\“é‘u,m’; (’"";P” ””’) FRE- ) and Biomechanics

Biomechanics
Acceptable?

Chapter 4: Pose Estimation Using Fluoroscopy

Copyright 2022 R. H. Taylor Engineering h Center for C Surgical Systems and Technology @
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ciis 3D-2D Registration of Osteotomy Fragments
M N

arg min ZS Im,zpm(ICT§9n)

01, 0N ESE(3) 5T =1

Fixed Images
with Moving
Image Edges

Moving Images

Level 0 (0.125), pe

R. Grupp, R. Murphy, M. Armand, R. Taylor

Copyright 2022 R. H. Taylor  Slide credit: Robert Grupp  gngineering Center for C Surgical Systems and Technology B

99

10/31/22

45



ciis 3D-2D Registration of Osteotomy Fragments

* Compute the Sobel derivatives in the X and Y directions of the two input images:

VxIi, VxI, Vyli, Vyls
*  Compute NCC between the corresponding gradient images:

S(Il,fg) = NCC(V)(Il,foQ) - NCC(Vyfl, Vy[g)

Fluoro.

VYII VYIQ

R. Grupp, R. Murphy, M. Armand, R. Taylor

Copyright 2022 R. H. Taylor  Slide credit: Robert Grupp  gngineering h Center for C Surgical Systems and Technology $
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Initialize Using a Nominal AP View?

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp

. o == |
Copyright 2022 R. H. Taylor Engineering Research Center for Computer Integrated Surgical Systems and Technology

101

10/31/22

46



Too Many Local Minimal!
Yy :
Initialization \
1
2,
L%
ST 0.95
& ol
s G0 Iy 5
TR 17 7
DL L1774,
AT LIRS
09 7
£ &
k9 < 0.85
S 08
Objective
0.7 i
Function Value 0.8
0|
06
0
0.75
06
o 08 07
Translation vi Rotation
Component Component
s of Screw s of Screw
Ground Truth
Chapter 4: Pose Estimation Using Fluoroscopy
) )y
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology SRy
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Use a Single Landmark to Initialize Registration

* Assume the pelvis is in an AP orientation — this may be
computed preoperatively
* Manually annotate a single landmark to recover translation

Cam Z

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp 0 =
Copyright 2022 R. H. Taylor Surgical Systems and Technology

103

Engineering Center for C

10/31/22

47



Example of a Single Landmark Initialization

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp

. o=
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology S

Automatically Initialize Second and Third Views

* Constrain C-arm motion to orbital rotation

* Perform an exhaustive search over +90° in 1° increments

Patient

”

Simulated C-Arm X-Ray Source Trajectory

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp

) )
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology
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Example Initializations From Orbital Search

View #2 View #3

Level 0 (0.125), Pelvis2, 000

Chapter 4: Pose Estimation Using Fluoroscopy

Slide credit: Robert Grupp

) 0) =
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology

Automatic Landmark-Based Initialization

* Train a CNN to recognize
approximate landmark positions in
X-ray images

* Use landmark-based 2D-3D
registration to initialize registration

* Combine landmark and intensity
objective functions

* Use segmentation labels to ignore
intensities of irrelevant anatomy

Images: Robert Grupp 0=
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology
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Why Not Simultaneously Use Intensities and Features?

* Registration objective function:

i AS (P (0p,0Lp.0rr) . 1)+ (1 —XN)R(0p,0LF,0
9p,9Lp51;BGSE(3) ’( Op, 0L, 0rr), 1)+ ( YR (0p,0Lr,0rF)

Image Similarity Term Regularization Term

* Usually, regularization penalizes the amount of rotation and
translation away from initialization

* Why not directly include the landmark re-projection as
regularization?

R(6 )*iﬁup( O.00) — |
P 207 — Papi P) pZDHz

* Can also think of this as running landmark registration and

reg u Ia rl ZI n g on | ma ge a p pea rance Chapter 6: Automatic and Robust Registration
i i i U=
Copyright 2022 R. H. Taylor  Slide credit: Robert Grupp  gngineering Center for C Surgical Systems and Technology -%- o
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Include Landmark Reprojection Into Objective Function

* Landmarks Detected in 2D
are Shown as Cyan Circles

* Landmarks Projected from
3D are Shown as Cyan
Asterisks *

* Cyan Lines Indicate
Correspondence |, S

* The Initial Pose Aligns the 2D (SN
and 3D Left Femoral Head ‘
Centers Level 0 (0.125), Pelvis1, 000

Chapter 6: Automatic and Robust Registration

) 0)
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Objective Function When Combining Landmark Re-
Projection

Initialization \

Line between initialization and ground

truth is the SE(3) screw motion
Objective
Function Value

05 A~
: - s
02 ~ 04
0a < 1
~ -~ 086
06 <
o8 .
3 < Rotation
Translation 1 a1 Component
Component s of Screw
s of Screw
Ground Truth

Chapter 6: Automatic and Robust Registration

Slide credit: Robert Grupp 0=
C ight 2022 R. H. Tayl i il i K
opyrigl - H. Taylor Engineering Center for Ct Surgical Systems and Technology B

110

Challenge: Narrow Capture Range

Initialization range

/

Narrow Capture Range Similarity

« Local minima of conventional hand-crafted similarity
function, such as Grad-NCC

« Requires the initialization close to the ground truth [ ]
Hand-Crafted Similarity Function Shape

Conventional Intensity-based 2D/3D Registration Strategy:
+ CMAES + Patch-based Grad-NCCI25]

- 2 "
,/’ Registration
L Estimation

Initialization

Target X-ray Registration Movie

s (pimeies, BISS @necace 100

[25) Grupp, RB, Armand, M. and Taylor; RH, 2018. Patch-based image ﬁ JOHNS HO
similarity for 2D/3D pelvis during wn
osteotomy. In CARE Workshop of MICCAI 2018.

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022 °
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology %
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Can CNNs Help?

Pose Regression Methods

Limitations:

« Learning a mapping function from 2D projections is an ill-posed problem,
which is prone to strongly overfit to training domain

« Direct pose regression is unconstrained, which can change
dramatically if the input image appearance has a tiny difference

N Encoder )_'

High-level Prototype

[26] Miao, S, Wang, ZJ. and Liao, R,, 2016. A CNN regression approach for (=] = ABORATORY (OB o~ i
real-time 2D/3D registration. IEEE transactions on medical imaging 35(5), Q@ JOLINS HOPKINS s. Computztional B3 @ ARCADE 110
Pp.1352-1363. i Sensing + Robotics *

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022

. o=
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology S

Can CNNs Help?

A More Desired Solution Extended capture range!

Initialization range

Similarity Similarity
Bgt 6 egt 6
Hand-Crafted Similarity Function Shape Network Similarity Function Shape
Traditional DRR Projector is not Differentiable! i

« Oversized system matrix A(6) to fit in memory o 3P(V,0)
1 a0
+ Conventional optimization strategies are numeric-

based methods, such as CMAES

9PV, 6) 2D projection:
[27) Hansen, N,, Milller, S.D. and Koumoutsakos, P, 2003. Reducing the time 4 @)Lt o P 1=P(V;0)
complexity of the derandomized evolution strategy with covariance matrix gy JOHNS HOPKINS () Gomputatonal B 4G Si; M
ion (CMA-ES). y ion, 11(1), pp.1-18. S ENCINEERING. Sensing + Robotics * ARCADE
Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022 P
Copyright 2022 R. H. Taylor Engineering Center for Ct Surgical Systems and Technology @
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Differentiable DRR Operator (Gao)

ProST -- Differentiable DRR Operator

Spatial Sampling Grid: G

« Follows projection geometry

Source

Detector plane

[28] Gao, C.. Liu, X., Gu, W. Killeen, B., Amand, M., Taylor, R, & Unberath, M.
(2020, October). Generalizing spatial transformers to projective geometry with

to 2D/3D In
Computing and Computer-Assisted Intervention (pp. 329-339). Springer, Cham.

Conference on Medical Image @

0 € SE(3)

2D projection: I

JOHN:

sl:{f?lrtkllhs ﬁ'{cnmpmamnal BiS @ARCADE 12

Given a pose parameter 6
and 3D volume V as input, the
DRR projection is:

I=P(,6)
= sum(interp(V,T(0)G))

2 ¥ ’
Linear transformation

Summation along the projection direction

Breakthrough:

aP(V,0) aP(V,0)

: : ,
90 v are differentiable!

Sensing + Robotics "

Copyright 2022 R. H. Taylor

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022

Engineering

h Center for C

0=
Surgical Systems and Technology
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ProST -- Projective Spatial Transformers (Gao)

0 € SE(3) ‘L

R

PYTHRCH
C++, CUDA backend

Objective
Pl function

How do we learn a better similarity function?

Gradient-NCC loss

Similarity

Example registration using Grad-NCC similarity,
optimized by PyTorch built-in SGD optimizer

JOHNS HOPKINS ﬁ. Computational B *Sﬁ @
ENGINEERING. Sensing + Robotics ™ < ARCADE 113

Ogt 6
Network Similarity Function Shape

NGl

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022

Copyright 2022 R. H. Taylor Engineering

Center for C

0
Surgical Systems and Technology
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ProST - 2D/3D Registration Pipeline (Gao)

Target Similarity Function -- Geodesic Loss

« A convex objective function with respect to SE(3) pose parameters

Im
CT Segmentation Moving Image

— DX —

6, € SE(3) |

Pose Parameter

Predicted
Similarity

Rl T Spet

aSnCl
Gradient-driven 00,
Double Backward Loss ™ 0Lg, I
Fr Target X-ray Image
m

Geodesic Gradient

&7 Jorns HOPkINS (®) computationst~ BAC S @
Vo N e 2 i ARCADE; 114

Copyright 2022 R. H. Taylor

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022

0) =N
Engineering h Center for C Surgical Systems and Technology B
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ProST - 2D/3D Registration Pipeline (Gao)

Loss Shape Comparison Network Similarity — Grad-NCC Similarity
] For each Degree of Freedom

10

S0 0 D S0 20 0 o 10 2 3

wlaf ™y (NG| >

S~ \/‘”’

B 100 -0 -200 -100 0 100
Z Transiation (mm)

100 =75 =50 - 0 7 100 -100 =75 -50 200 300

5 0 B 5 0
X Transiation (mm) ¥ Translation (mm)

[ Network Similarity
B Grad-NCC Similarity

5, @ARCADE 17

T ropsrionss yomu BCS
2 Sensing + Robotics *

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022 °
Copyright 2022 R. H. Taylor Engineering Center for C Surgical Systems and Technology @
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ProST - 2D/3D Registration Pipeline (Gao)

« Our pipeline was trained using 19 CT scans, evaluated on
1,000 synthetic X-rays and 200 real X-rays

Pelvis Real

Histogram of Rotation Error
0.03!

|
Histogram of Translation Error
5

0 20 40 60
Rotation Frror (deqrees)

Pelvi
Histogram of Rotation Erro
0.150 initialization
prost
20125 N CMAES from initia
El . CMAES from prost
2 0100 |
=
= 0.075
Z
E
% 0.050
&
0025
0.000

s Simulation
T Histogram of Translation Error
| oo nitialization
prost
1| m— CMAES from initial
003 W CMAES from prost

0 100 200 300 400
Translation Frror (mm)

initialization
prost
s CMAES from initial
W CMAES from prost

0 20 40 60
Rotation Error (dearees)

Success Rate (%): Mean Target Registration Error < 10 mm

initialization
prost
s CMAES from initial
W CMAES from prost

100 200 300 400
Translation Error (mm)

Simulation Real
CMAES from Initialization 32.6 36.0
CMAES from ProST Registration 82.6 73.2

v

JOHNS HOPKINS ®) comptational
S ERGNEERNG: Sensing + Rohotics *

(CINEERING

Copyright 2022 R. H. Taylor

Center for C

Engineering

Slide Credit: Cong Gao, Fluoroscopic Navigation for Robot-Assisted Orthopedic Surgery, PhD Dissertation Defense, August 2022
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