

Solving for R: iteration method Given $\{\cdots, (\tilde{\mathbf{a}}_i, \tilde{\mathbf{b}}_i), \cdots\}$, want to find $\mathbf{R} = \arg \min \sum_i ||\mathbf{R}\tilde{\mathbf{a}}_i - \tilde{\mathbf{b}}_i||^2$ Step 0: Make an initial guess \mathbf{R}_0 Step 1: Given \mathbf{R}_k , compute $\breve{\mathbf{b}}_i = \mathbf{R}_k^{-1} \tilde{\mathbf{b}}_i$ Step 2: Compute $\Delta \mathbf{R}$ that minimizes $\sum_i (\Delta \mathbf{R} \ \tilde{\mathbf{a}}_i - \breve{\mathbf{b}}_i)^2$ Step 3: Set $\mathbf{R}_{k+1} = \mathbf{R}_k \Delta \mathbf{R}$ Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)

