Point cloud to point cloud rigid transformations

Russell Taylor

601.455-655

1

Minimizing Rigid Registration Errors

Typically, given a set of points $\left\{\mathbf{a}_{i}\right\}$ in one coordinate system and another set of points $\left\{\mathbf{b}_{i}\right\}$ in a second coordinate system Goal is to find $[\mathbf{R}, \mathbf{p}]$ that minimizes

$$
\eta=\sum_{i} \mathbf{e}_{i} \cdot \mathbf{e}_{i}
$$

where

$$
\mathbf{e}_{i}=\left(\mathbf{R} \bullet \mathbf{a}_{i}+\mathbf{p}\right)-\mathbf{b}_{i}
$$

This is tricky, because of \boldsymbol{R}.

Minimizing Rigid Registration Errors

Step 1: Compute

$$
\begin{aligned}
\overline{\mathbf{a}} & =\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{a}}_{i} & \overline{\mathbf{b}} & =\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{b}}_{i} \\
\tilde{\mathbf{a}}_{i} & =\overrightarrow{\mathbf{a}}_{i}-\overline{\mathbf{a}} & \tilde{\mathbf{b}}_{i} & =\overrightarrow{\mathbf{b}}_{i}-\overline{\mathbf{b}}
\end{aligned}
$$

Step 2: Find \mathbf{R} that minimizes

$$
\sum_{i}\left(\mathbf{R} \cdot \tilde{\mathbf{a}}_{i}-\tilde{\mathbf{b}}_{i}\right)^{2}
$$

Step 3: Find $\overrightarrow{\mathbf{p}}$

$$
\overrightarrow{\mathbf{p}}=\overline{\mathbf{b}}-\mathbf{R} \cdot \overline{\mathbf{a}}
$$

Step 4: Desired transformation is

$$
\mathbf{F}=\operatorname{Frame}(\mathbf{R}, \overrightarrow{\mathbf{p}})
$$

Point cloud to point cloud registration

Solving for R: iteration method

Given $\left\{\cdots,\left(\tilde{\mathbf{a}}_{i}, \tilde{\mathbf{b}}_{i}\right), \cdots\right\}$, want to find $\mathbf{R}=\arg \min \sum_{i}\left\|\mathbf{R} \tilde{\mathbf{a}}_{i}-\tilde{\mathbf{b}}_{i}\right\|^{2}$

Step 0: Make an initial guess \mathbf{R}_{0}
Step 1: Given \mathbf{R}_{k}, compute $\breve{\mathbf{b}}_{i}=\mathbf{R}_{k}^{-1} \tilde{\mathbf{b}}_{i}$
Step 2: Compute $\Delta \mathbf{R}$ that minimizes

$$
\sum_{i}\left(\Delta \mathbf{R} \quad \tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}\right)^{2}
$$

Step 3: Set $\mathbf{R}_{k+1}=\mathbf{R}_{k} \Delta \mathbf{R}$
Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)

Iterative method: Getting Initial Guess

We want to find an approximate solution \mathbf{R}_{0} to

$$
\mathbf{R}_{0} \cdot\left[\cdots \tilde{\mathbf{a}}_{i} \cdots\right] \approx\left[\cdots \tilde{\mathbf{b}}_{i} \cdots\right]
$$

One way to do this is as follows. Form matrices

$$
\mathbf{A}=\left[\cdots \tilde{\mathbf{a}}_{i} \cdots\right] \quad \mathbf{B}=\left[\cdots \tilde{\mathbf{b}}_{i} \cdots\right]
$$

Solve least-squares problem $\mathbf{M}_{3 \times 3} \mathbf{A}_{3 \times N} \approx B_{3 \times N}$
Note : You may find it easier to solve $\mathbf{A}_{3 \times N}^{\top} \mathbf{M}_{3 \times 3}^{\top} \approx \mathbf{B}_{3 \times N}^{\top}$ Set $\mathbf{R}_{0}=$ orthogonalize $\left(\mathbf{M}_{3 \times 3}\right)$. Verify that \mathbf{R} is a rotation Our problem is now to solve $\mathbf{R}_{0} \Delta \mathbf{R A} \approx B$. I.e., $\Delta \mathbf{R A} \approx \mathbf{R}_{0}^{-1} B$

Iterative method: Solving for ΔR

Approximate $\Delta \mathbf{R}$ as $(\mathbf{I}+\operatorname{skew}(\bar{\alpha}))$. I.e.,

$$
\Delta \mathbf{R} \bullet \mathbf{v} \approx \mathbf{v}+\bar{\alpha} \times \mathbf{v}
$$

for any vector \mathbf{v}. Then, our least squares problem becomes

$$
\min _{\Delta \mathbf{R}} \sum_{i}\left(\Delta \mathbf{R} \bullet \tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}\right)^{2} \approx \min _{\bar{\alpha}} \sum_{i}\left(\tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}+\bar{\alpha} \times \tilde{\mathbf{a}}_{i}\right)^{2}
$$

This is linear least squares problem in $\bar{\alpha}$.

Then compute $\Delta \mathbf{R}(\bar{\alpha})$.

Note: Use trigonometric formulas to compute this

Direct Iterative approach for Rigid Frame

Given $\left\{\cdots,\left(\overrightarrow{\mathbf{a}}_{i}, \overrightarrow{\mathbf{b}}\right), \cdots\right\}$, want to find $\mathbf{F}=\arg \min \sum_{i}\|\mathbf{F} \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}\|^{2}$

Step 0: Make an initial guess F_{0}
Step 1: Given \mathbf{F}_{k}, compute $\overrightarrow{\mathbf{a}}_{i}^{k}=\mathbf{F}_{k} \overrightarrow{\mathbf{a}}_{i}$
Step 2: Compute $\Delta \mathbf{F}$ that minimizes

$$
\sum_{i}\left\|\Delta \mathbf{F} \overrightarrow{\mathbf{a}}_{i}^{k}-\overrightarrow{\mathbf{b}}_{i}\right\|^{2}
$$

Step 3: Set $\mathbf{F}_{k+1}=\Delta \mathbf{F F}_{k}$
Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)

Direct Iterative approach for Rigid Frame

$$
\text { To solve for } \Delta \mathbf{F}=\arg \min \sum_{i}\left\|\Delta \mathbf{F} \overrightarrow{\mathbf{a}}_{i}^{k}-\overrightarrow{\mathbf{b}}_{i}\right\|^{2}
$$

$$
\begin{aligned}
\Delta \mathbf{F} \overrightarrow{\mathbf{a}}_{i}^{k}-\overrightarrow{\mathbf{b}}_{i} & \approx \vec{\alpha} \times \overrightarrow{\mathbf{a}}_{i}^{k}+\vec{\varepsilon}+\overrightarrow{\mathbf{a}}_{i}^{k}-\overrightarrow{\mathbf{b}}_{i} \\
\vec{\alpha} \times \overrightarrow{\mathbf{a}}_{i}^{k}+\vec{\varepsilon} & \approx \overrightarrow{\mathbf{b}}_{i}-\overrightarrow{\mathbf{a}}_{i}^{k} \\
s k\left(-\overrightarrow{\mathbf{a}}_{i}^{k}\right) \vec{\alpha}+\vec{\varepsilon} & \approx \overrightarrow{\mathbf{b}}_{i}-\overrightarrow{\mathbf{a}}_{i}^{k}
\end{aligned}
$$

Solve the least-squares problem

$$
\left[\begin{array}{cc}
\vdots & \vdots \\
\operatorname{sk}\left(-\overrightarrow{\mathbf{a}}_{i}^{k}\right) & \mathbf{I} \\
\vdots & \vdots
\end{array}\right]\left[\begin{array}{l}
\vec{\alpha} \\
\vec{\varepsilon}
\end{array}\right] \approx\left[\begin{array}{c}
\vdots \\
\overrightarrow{\mathbf{b}}_{i}-\overrightarrow{\mathbf{a}}_{i}^{k} \\
\vdots
\end{array}\right]
$$

Now set $\Delta \mathbf{F}=[\Delta \mathbf{R}(\vec{\alpha}), \vec{\varepsilon}]$

Direct Techniques to solve for \mathbf{R}

- Method due to K. Arun, et. al., IEEE PAMI, Vol 9, no 5, pp 698-700, Sept 1987
Step 1: Compute

$$
\mathbf{H}=\sum_{i}\left[\begin{array}{lll}
\tilde{a}_{i, x} \tilde{b}_{i, x} & \tilde{a}_{i, x} \tilde{b}_{i, y} & \tilde{a}_{i, x} \tilde{b}_{i, z} \\
\tilde{a}_{i, y} \tilde{b}_{i, x} & \tilde{a}_{i, y} \tilde{b}_{i, y} & \tilde{a}_{i, y} \tilde{b}_{i, z} \\
\tilde{a}_{i, z} \tilde{b}_{i, x} & \tilde{a}_{i, z} \tilde{b}_{i, y} & \tilde{a}_{i, z} \tilde{b}_{i, z}
\end{array}\right]
$$

$$
\begin{array}{|l|}
\hline \text { NOTE well } \\
\hline
\end{array}
$$

Step 2: Compute the SVD of $\mathbf{H}=\mathbf{U S V}^{\mathbf{t}}$
Step 3: $\mathbf{R}=\mathbf{V U}^{\mathbf{t}}$
Step 4: Verify $\operatorname{Det}(\mathbf{R})=1$. If not, then algorithm may fail.

- Failure is rare, and mostly fixable. The paper has details.

17 601.455-655 Fall 2000-2022
Copyright © R. H. Taylor

Quarternion Technique to solve for \mathbf{R}

- B.K.P. Horn, "Closed form solution of absolute orientation using unit quaternions", J. Opt. Soc. America, A vol. 4, no. 4, pp 629-642, Apr. 1987.
- Method described as reported in Besl and McKay, "A method for registration of 3D shapes", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, February 1992.
- Solves a 4×4 eigenvalue problem to find a unit quaternion corresponding to the rotation
- This quaternion may be converted in closed form to get a more conventional rotation matrix

Digression: quaternions

Invented by Hamilton in 1843. Can be thought of as

$$
4 \text { elements: }
$$

scalar \& vector:
Complex number:

$$
\begin{aligned}
& \mathbf{q}= {\left[q_{0}, q_{1}, q_{2}, q_{3}\right] } \\
& \mathbf{q}=s+\overrightarrow{\mathbf{v}}=[s, \overrightarrow{\mathbf{v}}] \\
& \mathbf{q}= q_{0}+q_{1} i+q_{2} j+q_{3} k \\
& \text { where } i^{2}=j^{2}=k^{2}=i j k=-1
\end{aligned}
$$

Properties:
Linearity: $\quad \lambda \mathbf{q}_{1}+\mu \overrightarrow{\mathbf{q}}_{2}=\left[\lambda s_{1}+\mu s_{2}, \lambda \overrightarrow{\mathbf{v}}_{1}+\mu \overrightarrow{\mathbf{v}}_{2}\right]$
Conjugate: $\quad \mathbf{q}^{*}=s-\overrightarrow{\mathbf{v}}=[s,-\overrightarrow{\mathbf{v}}]$
Product: $\quad \mathbf{q}_{1} \circ \mathbf{q}_{2}=\left[s_{1} s_{2}-\overrightarrow{\mathbf{v}}_{1} \cdot \overrightarrow{\mathbf{v}}_{2}, s_{1} \overrightarrow{\mathbf{v}}_{2}+s_{2} \overrightarrow{\mathbf{v}}_{1}+\overrightarrow{\mathbf{v}}_{1} \times \overrightarrow{\mathbf{v}}_{2}\right]$
Transform vector: $\quad \mathbf{q} \circ \overrightarrow{\mathbf{p}}=\mathbf{q} \circ[0, \overrightarrow{\mathbf{p}}] \circ \mathbf{q}^{*}$
\quad Norm: $\quad\|\mathbf{q}\|=\sqrt{s^{2}+\overrightarrow{\mathbf{v}} \bullet \overrightarrow{\mathbf{v}}}=\sqrt{q_{0}{ }^{2}+q_{1}{ }^{2}+q_{2}{ }^{2}+q_{3}{ }^{2}}$

Digression continued: unit quaternions

We can associate a rotation by angle θ about an axis $\overrightarrow{\mathbf{n}}$ with the unit quaternion:

$$
\operatorname{Rot}(\overrightarrow{\mathbf{n}}, \theta) \Leftrightarrow\left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right]
$$

Exercise: Demonstrate this relationship. I.e., show

$$
\operatorname{Rot}\left((\overrightarrow{\mathbf{n}}, \theta) \cdot \overrightarrow{\mathbf{p}}=\left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right] \circ[0, \overrightarrow{\mathbf{p}}] \circ\left[\cos \frac{\theta}{2},-\sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right]\right.
$$

Hint: Substitute and reduce to see if you get Rodrigues' formula.

A bit more on quaternions

Exercise: show by substitution that the various formulations for quaternions are equivalent
A few web references:
http://mathworld.wolfram.com/Quaternion.html http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation http://www.euclideanspace.com/maths/algebra/
realNormedAlgebra/quaternions/index.htm

CAUTION: Different software packages are not always consistent in the order of elements if a quaternion is represented as a 4 element vector. Some put the scalar part first, others (including cisst libraries) put it last.

Rotation matrix from unit quaternion

$$
\begin{aligned}
\mathbf{q} & =\left[q_{0}, q_{1}, q_{2}, q_{3}\right] ;\|\mathbf{q}\|=1 \\
\mathbf{R}(\mathbf{q}) & =\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right]
\end{aligned}
$$

Unit quaternion from rotation matrix

$$
\mathbf{R}(\mathbf{q})=\left[\begin{array}{lll}
r_{x x} & r_{y x} & r_{z x} \\
r_{x y} & r_{y y} & r_{z y} \\
r_{x z} & r_{y z} & r_{z z}
\end{array}\right] ; \quad \begin{aligned}
& a_{0}=1+r_{x x}+r_{y y}+r_{z z} ; a_{1}=1+r_{x x}-r_{y y}-r_{z z} \\
& a_{2}=1-r_{x x}+r_{y y}-r_{z z} ; a_{3}=1-r_{x x}-r_{y y}+r_{z z}
\end{aligned}
$$

$a_{0}=\max \left\{a_{k}\right\}$	$a_{1}=\max \left\{a_{k}\right\}$	$a_{2}=\max \left\{a_{k}\right\}$	$a_{3}=\max \left\{a_{k}\right\}$
$q_{0}=\frac{\sqrt{a_{0}}}{2}$	$q_{0}=\frac{r_{y z}-r_{z y}}{4 q_{1}}$	$q_{0}=\frac{r_{2 x}-r_{x z}}{4 q_{2}}$	$q_{0}=\frac{r_{x y}-r_{y x}}{4 q_{3}}$
$q_{1}=\frac{r_{x y}-r_{y x}}{4 q_{0}}$	$q_{1}=\frac{\sqrt{a_{1}}}{2}$	$q_{1}=\frac{r_{x y}+r_{y x}}{4 q_{2}}$	$q_{1}=\frac{r_{x z}+r_{z x}}{4 q_{3}}$
$q_{2}=\frac{r_{z x}-r_{x z}}{4 q_{0}}$	$q_{2}=\frac{r_{x y}+r_{y x}}{4 q_{1}}$	$q_{2}=\frac{\sqrt{a_{2}}}{2}$	$q_{2}=\frac{r_{y z}+r_{z y}}{4 q_{3}}$
$q_{3}=\frac{r_{y z}-r_{z y}}{4 q_{0}}$	$q_{3}=\frac{r_{x z}+r_{z x}}{4 q_{1}}$	$q_{3}=\frac{r_{y z}+r_{z y}}{4 q_{2}}$	$q_{3}=\frac{\sqrt{a_{3}}}{2}$

Rotation axis and angle from rotation matrix

Many options, including direct trigonemetric solution.
But this works:

```
[\vec{\mathbf{n}},0]\leftarrowExtractAxisAngle(\mathbf{R})
{
        [s,\vec{\mathbf{v}}]\leftarrow\mathrm{ ConvertToQuaternion(R)}
        return([\vec{\mathbf{v}}/||\vec{\mathbf{v}}|,2atan(s/|\vec{\mathbf{v}}|)
}
```


Quaternion method for \mathbf{R}

Step 1: Compute

$$
\mathbf{H}=\sum_{i}\left[\begin{array}{ccc}
\tilde{a}_{i, x} \tilde{b}_{i, x} & \tilde{a}_{i, x} \tilde{b}_{i, y} & \tilde{a}_{i, x} \tilde{b}_{i, z} \\
\tilde{a}_{i, y} \tilde{b}_{i, x} & \tilde{a}_{i, y} \tilde{b}_{i, y} & \tilde{a}_{i, y} \tilde{b}_{i, z} \\
\tilde{a}_{i, z} \tilde{b}_{i, x} & \tilde{a}_{i, z} \tilde{b}_{i, y} & \tilde{a}_{i, z} \tilde{b}_{i, z}
\end{array}\right]
$$

Step 2: Compute

$$
\mathbf{G}=\left[\begin{array}{cc}
\operatorname{trace}(\mathbf{H}) & \Delta^{T} \\
\Delta & \mathbf{H}+\mathbf{H}^{T}-\operatorname{trace}(\mathbf{H}) \mathbf{I}
\end{array}\right]
$$

where $\Delta^{T}=\left[\begin{array}{lll}\mathbf{H}_{2,3}-\mathbf{H}_{3,2} & \mathbf{H}_{3,1}-\mathbf{H}_{1,3} & \mathbf{H}_{1,2}-\mathbf{H}_{2,1}\end{array}\right]$
Step 3: Compute eigen value decomposition of \mathbf{G}

$$
\operatorname{diag}(\bar{\lambda})=\mathbf{Q}^{T} \mathbf{G} \mathbf{Q}
$$

Step 4: The eigenvector $\mathbf{Q}_{k}=\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$ corresponding to the largest eigenvalue λ_{k} is a unit quaternion corresponding to the rotation.

Another Quaternion Method for R

Let $\mathbf{q}=s+\overrightarrow{\mathbf{v}}$ be the unit quaternion corresponding
to \mathbf{R}. Let $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{b}}$ be vectors with $\tilde{\mathbf{b}}=\mathbf{R} \cdot \tilde{\mathbf{a}}$ then we have the quaternion equation

$$
\begin{aligned}
(s+\overrightarrow{\mathbf{v}}) \cdot(0+\tilde{\mathbf{a}})(s-\overrightarrow{\mathbf{v}}) & =0+\tilde{\mathbf{b}} \\
(s+\overrightarrow{\mathbf{v}}) \cdot(0+\tilde{\mathbf{a}}) & =(0+\tilde{\mathbf{b}}) \cdot(s+\overrightarrow{\mathbf{v}}) \text { since }(s-\overrightarrow{\mathbf{v}})(s+\overrightarrow{\mathbf{v}})=1+\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Expanding the scalar and vector parts gives

$$
\begin{aligned}
-\overrightarrow{\mathbf{v}} \cdot \tilde{\mathbf{a}} & =-\overrightarrow{\mathbf{v}} \cdot \tilde{\mathbf{b}} \\
s \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{v}} \times \tilde{\mathbf{a}} & =s \tilde{\mathbf{b}}+\tilde{\mathbf{b}} \times \overrightarrow{\mathbf{v}}
\end{aligned}
$$

Rearranging ...

$$
\begin{aligned}
(\tilde{\mathbf{b}}-\tilde{\mathbf{a}}) \cdot \overrightarrow{\mathbf{v}} & =0 \\
s(\tilde{\mathbf{b}}-\tilde{\mathbf{a}})+(\tilde{\mathbf{b}}+\tilde{\mathbf{a}}) \times \overrightarrow{\mathbf{v}} & =\overrightarrow{\mathbf{0}}_{3}
\end{aligned}
$$

NOTE: This method works for any set of vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. We are using the symbols $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{b}}$ to maintain consistency with the discussion of the previous method.

Another Quaternion Method for \mathbf{R}

Expressing this as a matrix equation

$$
\left[\begin{array}{l|l}
0 & (\tilde{\mathbf{b}}-\tilde{\mathbf{a}})^{T} \\
\hline(\tilde{\mathbf{b}}-\tilde{\mathbf{a}}) & \operatorname{sk}(\tilde{\mathbf{b}}+\tilde{\mathbf{a}})
\end{array}\right]\left[\begin{array}{l}
s \\
\overrightarrow{\mathbf{v}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\overrightarrow{\mathbf{0}}_{3}
\end{array}\right]
$$

If we now express the quaternion \mathbf{q} as a 4 -vector $\overrightarrow{\mathbf{q}}=[s, \overrightarrow{\mathbf{v}}]^{\top}$, we can express the rotation problem as the constrained linear system

$$
\begin{aligned}
\mathbf{M}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}) \overrightarrow{\mathbf{q}} & =\overrightarrow{\mathbf{0}}_{4} \\
\|\overrightarrow{\mathbf{q}}\| & =1
\end{aligned}
$$

Another Quaternion Method for \mathbf{R}

In general, we have many observations, and we want to solve the problem in a least squares sense:

$$
\min \|\mathbf{M} \overrightarrow{\mathbf{q}}\| \text { subject to }\|\overrightarrow{\mathbf{q}}\|=1
$$

where

$$
\mathbf{M}=\left[\begin{array}{c}
\mathbf{M}\left(\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{b}}_{1}\right) \\
\vdots \\
\mathbf{M}\left(\overrightarrow{\mathbf{a}}_{n}, \overrightarrow{\mathbf{b}}_{n}\right)
\end{array}\right] \text { and } n \text { is the number of observations }
$$

Taking the singular value decomposition of $\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ reduces this to the easier problem

$$
\min \left\|\mathbf{U} \Sigma \mathbf{V}^{\top} \overrightarrow{\mathbf{q}}_{X}\right\|=\|\mathbf{U}(\Sigma \overrightarrow{\mathbf{y}})\|=\|\Sigma \overrightarrow{\mathbf{y}}\| \text { subject to }\|\overrightarrow{\mathbf{y}}\|=\left\|\mathbf{V}^{\top} \overrightarrow{\mathbf{q}}\right\|=\|\overrightarrow{\mathbf{q}}\|=1
$$

Another Quaternion Method for R

This problem is just

$$
\min \|\Sigma \overrightarrow{\mathbf{y}}\|=\left\|\left[\begin{array}{cccc}
\sigma_{1} & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 \\
0 & 0 & 0 & \sigma_{4}
\end{array}\right] \overrightarrow{\mathbf{y}}\right\| \text { subject to }\|\overrightarrow{\mathbf{y}}\|=1
$$

where σ_{i} are the singular values. Recall that SVD routines typically return the $\sigma_{i} \geq 0$ and sorted in decreasing magnitude. So σ_{4} is the smallest singular value and the value of $\overrightarrow{\mathbf{y}}$ with $\|\overrightarrow{\mathbf{y}}\|=1$ that minimizes $\|\Sigma \overrightarrow{\mathbf{y}}\|$ is $\overrightarrow{\mathbf{y}}=[0,0,0,1]^{T}$. The corresponding value of $\overrightarrow{\mathbf{q}}$ is given by $\overrightarrow{\mathbf{q}}=\mathbf{V} \overrightarrow{\mathbf{y}}=\mathbf{V}_{4}$. Where \mathbf{V}_{4} is the 4th column of \mathbf{V}.

Non-reflective spatial similarity (rigid+scale)

Non-reflective spatial similarity

Step 1: Compute

$$
\begin{aligned}
\overline{\mathbf{a}} & =\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{a}}_{i} & \overline{\mathbf{b}} & =\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{b}}_{i} \\
\tilde{\mathbf{a}}_{i} & =\overrightarrow{\mathbf{a}}_{i}-\overline{\mathbf{a}} & \tilde{\mathbf{b}}_{i} & =\overrightarrow{\mathbf{b}}_{i}-\overline{\mathbf{b}}
\end{aligned}
$$

Step 2: Estimate scale

$$
\sigma=\frac{\sum_{i}\left\|\tilde{\mathbf{b}}_{i}\right\|}{\sum_{i}\left\|\tilde{\mathbf{a}}_{i}\right\|}
$$

Step 3: Find \mathbf{R} that minimizes

$$
\sum_{i}\left(\mathbf{R} \cdot\left(\sigma \tilde{\mathbf{a}}_{i}\right)-\tilde{\mathbf{b}}_{i}\right)^{2}
$$

Step 4: Find $\overrightarrow{\mathbf{p}}$

$$
\overrightarrow{\mathbf{p}}=\overline{\mathbf{b}}-\mathbf{R} \cdot \overline{\mathbf{a}}
$$

Step 5: Desired transformation is
$\mathbf{F}=\operatorname{SimilarityFrame}(\sigma, \mathbf{R}, \overrightarrow{\mathbf{p}})$

Registration from line pairs

Approach 1:
Compute $\mathbf{F}_{a}=\left[\mathbf{R}_{a}, \overrightarrow{\mathbf{c}}_{a}\right]$ from line pair a
Compute $\mathbf{F}_{b}=\left[\mathbf{R}_{b}, \overrightarrow{\mathbf{c}}_{b}\right]$ from line pair b
$F_{a b}=F_{a}{ }^{-1} F_{b}$

Registration from line pairs

To get the midpoint:

$$
\begin{aligned}
& \text { Solve }\left[\begin{array}{cc}
\overrightarrow{\mathbf{n}}_{\mathrm{a}, 1} & -\overrightarrow{\mathbf{n}}_{\mathrm{a}, 2}
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\nu
\end{array}\right] \approx\left[\overrightarrow{\mathbf{a}}_{2}-\overrightarrow{\mathbf{a}}_{1}\right] \\
& \text { Then } \quad \overrightarrow{\mathbf{c}}_{\mathrm{a}}=\frac{\left(\overrightarrow{\mathbf{a}}_{1}+\lambda \overrightarrow{\mathbf{n}}_{\mathrm{a}, 1}\right)+\left(\overrightarrow{\mathbf{a}}_{2}+\nu \overrightarrow{\mathbf{n}}_{\mathrm{a}, 2}\right)}{2}
\end{aligned}
$$

Distance of a point from a line

So, to find the closest point to multiple lines

$$
\overrightarrow{\mathbf{c}}=\operatorname{argmin} \sum_{k} d_{k}{ }^{2}
$$

Solve this problem in a least squares sense:

$$
\overrightarrow{\mathbf{n}}_{k} \times\left(\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}_{k}\right) \approx \overrightarrow{\mathbf{0}} \text { for } k=1, \ldots, n
$$

Equivalently, solve

$$
\overrightarrow{\mathbf{n}}_{k} \times \overrightarrow{\mathbf{c}} \approx \overrightarrow{\mathbf{n}}_{k} \times \overrightarrow{\mathbf{a}}_{k} \text { for } k=1, \ldots, n
$$

Registration from multiple corresponding lines

Approach 2:
Solve $\mathbf{R}_{a b} \overrightarrow{\mathbf{n}}_{b, k} \approx \overrightarrow{\mathbf{n}}_{a, k}$ for $\mathbf{R}_{a b}$
Solve $\overrightarrow{\mathbf{n}}_{\mathrm{a}, k} \times \overrightarrow{\mathbf{c}}_{\mathrm{a}} \approx \overrightarrow{\mathbf{n}}_{\mathrm{a}, k} \times \overrightarrow{\mathbf{a}}_{k}$ for $\overrightarrow{\mathbf{c}}_{\mathrm{a}}$
Solve $\overrightarrow{\mathbf{n}}_{b, k} \times \overrightarrow{\mathbf{c}}_{b} \approx \overrightarrow{\mathbf{n}}_{b, k} \times \overrightarrow{\mathbf{b}}_{k}$ for $\overrightarrow{\mathbf{c}}_{b}$ $\overrightarrow{\mathbf{p}}_{a b}=\overrightarrow{\mathbf{c}}_{a}-\mathbf{R}_{a b} \overrightarrow{\mathbf{c}}_{b}$

