# Point cloud to point cloud rigid transformations

Russell Taylor 601.455-655



### Minimizing Rigid Registration Errors

Typically, given a set of points  $\{a_i\}$  in one coordinate system and another set of points  $\{b_i\}$  in a second coordinate system Goal is to find  $[\mathbf{R},\mathbf{p}]$  that minimizes

$$\eta = \sum_{i} \mathbf{e}_{i} \bullet \mathbf{e}_{i}$$

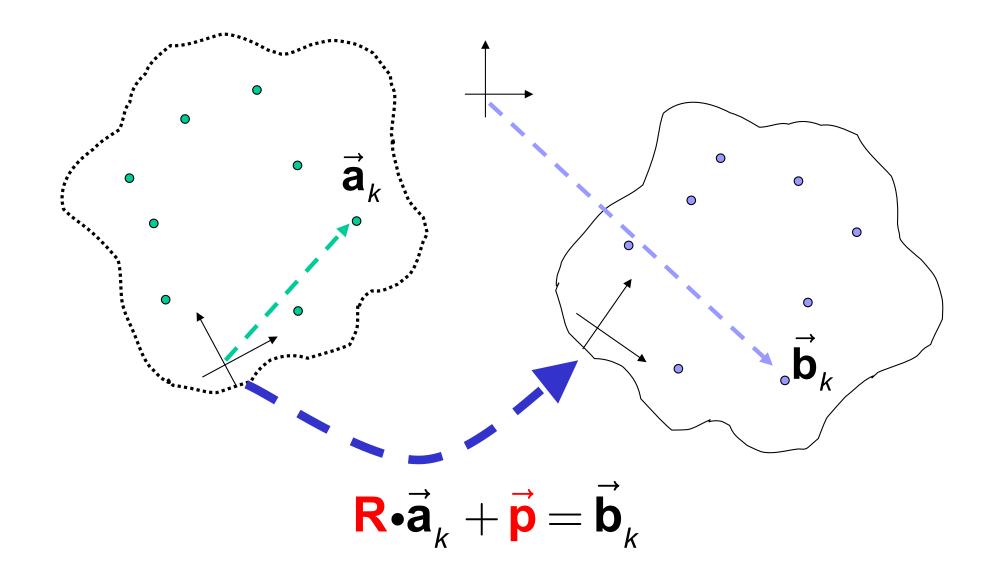
where

$$\mathbf{e}_i = (\mathbf{R} \cdot \mathbf{a}_i + \mathbf{p}) - \mathbf{b}_i$$

This is tricky, because of **R**.



# Point cloud to point cloud registration





## Minimizing Rigid Registration Errors

### Step 1: Compute

$$\overline{\mathbf{a}} = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathbf{a}}_{i}$$

$$\tilde{\mathbf{a}}_{i} = \vec{\mathbf{a}}_{i} - \overline{\mathbf{a}}$$

$$\overline{\mathbf{b}} = \frac{1}{N} \sum_{i=1}^{N} \vec{\mathbf{b}}_{i}$$

$$\tilde{\mathbf{b}}_i = \vec{\mathbf{b}}_i - \overline{\mathbf{b}}$$

### Step 2: Find R that minimizes

$$\sum_{i} (\mathbf{R} \cdot \tilde{\mathbf{a}}_{i} - \tilde{\mathbf{b}}_{i})^{2}$$

Step 3: Find  $\vec{p}$ 

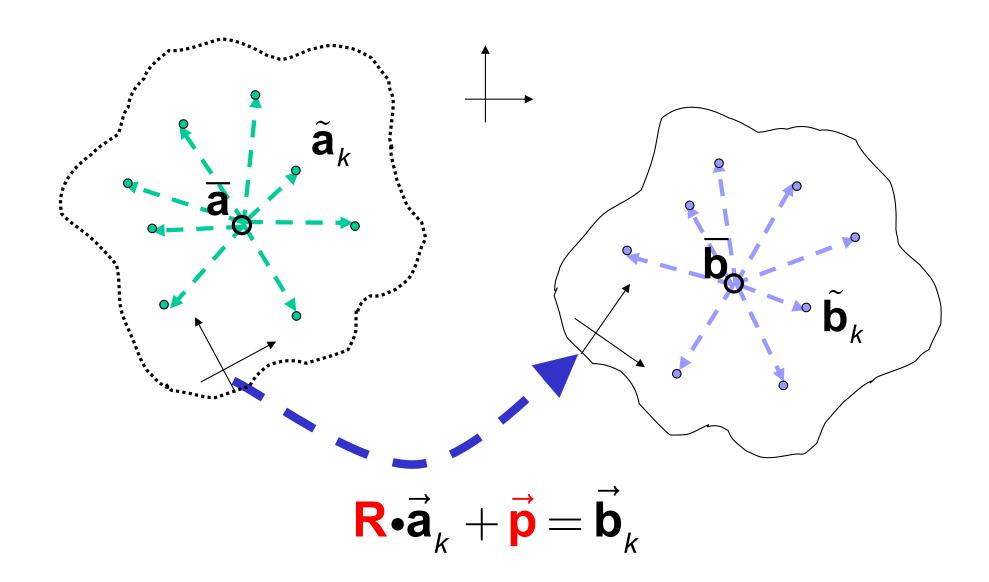
$$\vec{\mathbf{p}} = \overline{\mathbf{b}} - \mathbf{R} \cdot \overline{\mathbf{a}}$$

Step 4: Desired transformation is

$$\mathbf{F} = Frame(\mathbf{R}, \vec{\mathbf{p}})$$

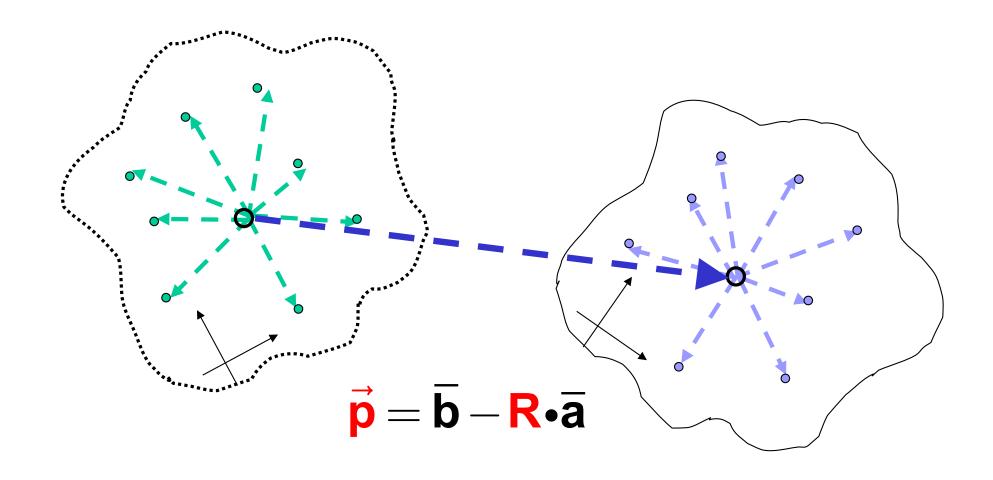


# Point cloud to point cloud registration

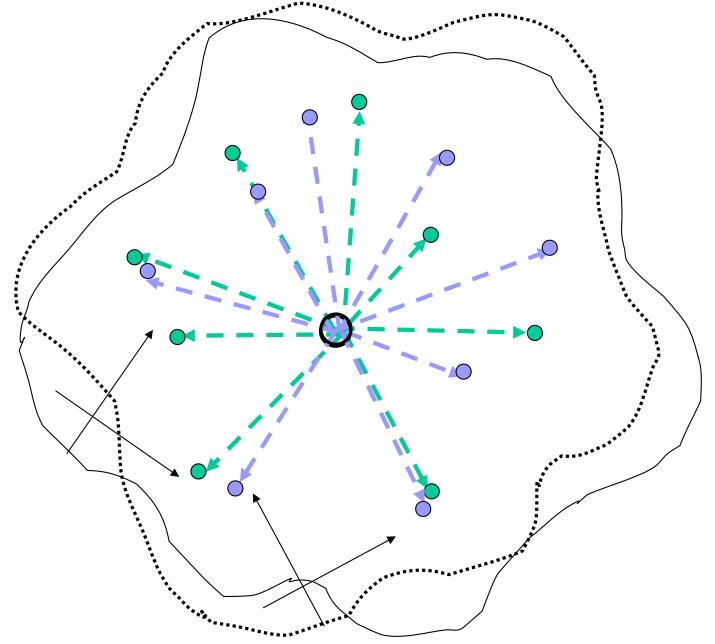




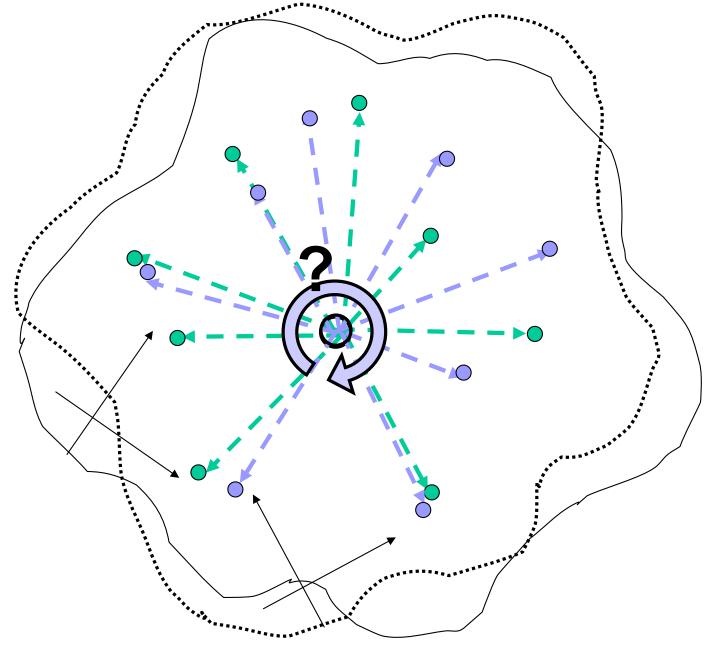
# Point cloud to point cloud registration



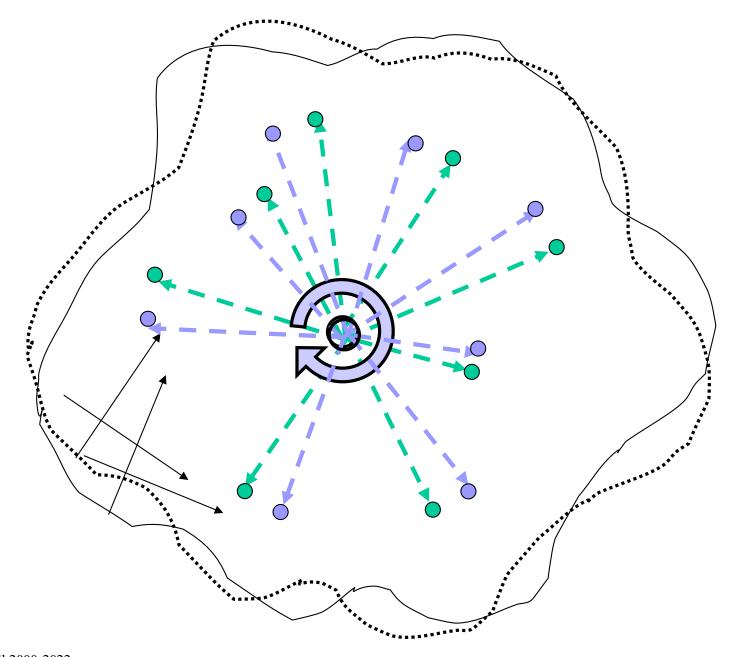




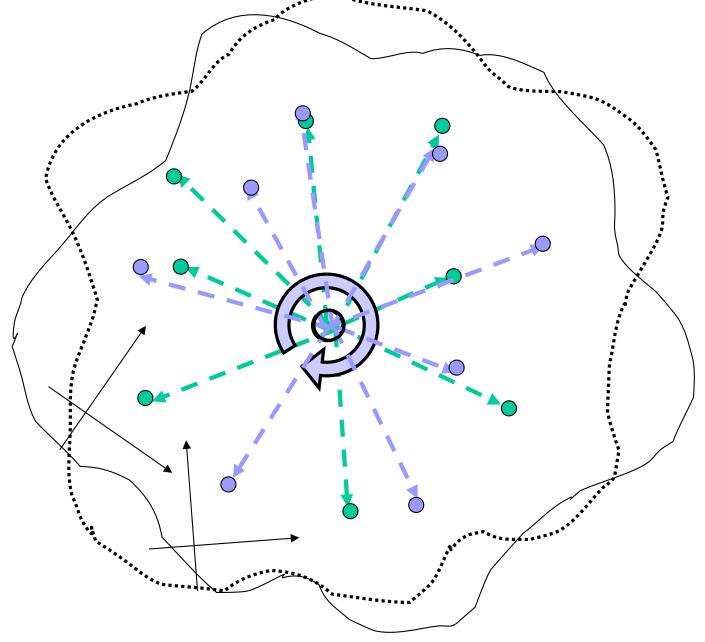






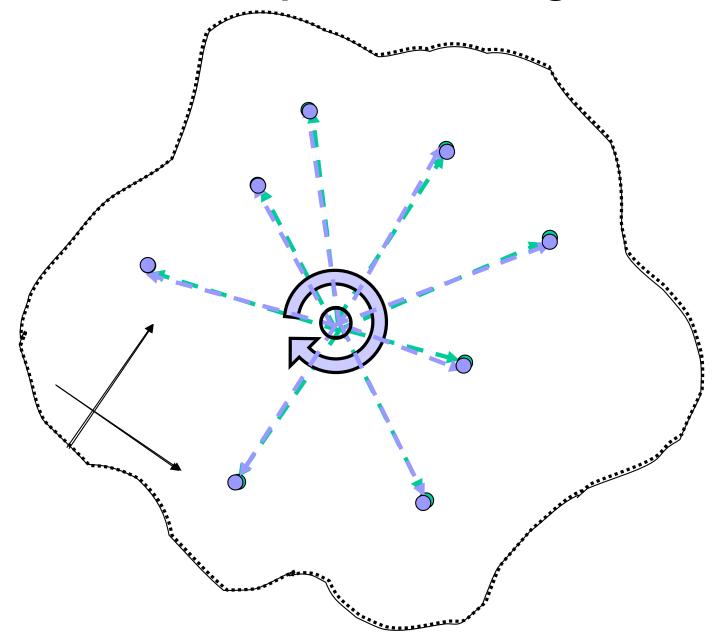








# Point cloud to point cloud registration





# Solving for R: iteration method

Given 
$$\{\cdots, (\tilde{\mathbf{a}}_i, \tilde{\mathbf{b}}_i), \cdots\}$$
, want to find  $\mathbf{R} = \arg\min \sum_i \|\mathbf{R}\tilde{\mathbf{a}}_i - \tilde{\mathbf{b}}_i\|^2$ 

Step 0: Make an initial guess  $\mathbf{R}_0$ 

Step 1: Given  $\mathbf{R}_k$ , compute  $\widecheck{\mathbf{b}}_i = \mathbf{R}_k^{-1} \widetilde{\mathbf{b}}_i$ 

Step 2: Compute  $\Delta \mathbf{R}$  that minimizes

$$\sum_{i} (\Delta \mathbf{R} \ \tilde{\mathbf{a}}_{i} - \check{\mathbf{b}}_{i})^{2}$$

Step 3: Set  $\mathbf{R}_{k+1} = \mathbf{R}_k \Delta \mathbf{R}$ 

Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)



## **Iterative method: Getting Initial Guess**

We want to find an approximate solution  $\mathbf{R}_{0}$  to

$$\mathbf{R}_{0} \bullet \left[ \cdots \tilde{\mathbf{a}}_{i} \cdots \right] \approx \left[ \cdots \tilde{\mathbf{b}}_{i} \cdots \right]$$

One way to do this is as follows. Form matrices

$$\mathbf{A} = \left[ \cdots \tilde{\mathbf{a}}_{i} \cdots \right] \quad \mathbf{B} = \left[ \cdots \tilde{\mathbf{b}}_{i} \cdots \right]$$

Solve least-squares problem  $\mathbf{M}_{3x3}\mathbf{A}_{3xN} \approx \mathbf{B}_{3xN}$ 

**Note**: You may find it easier to solve  $\mathbf{A}_{3xN}^T \mathbf{M}_{3x3}^T \approx \mathbf{B}_{3xN}^T$ 

Set  $\mathbf{R}_0 = orthogonalize(\mathbf{M}_{3x3})$ . Verify that  $\mathbf{R}$  is a rotation

Our problem is now to solve  $\mathbf{R}_0 \Delta \mathbf{R} \mathbf{A} \approx \mathbf{B}$ . I.e.,  $\Delta \mathbf{R} \mathbf{A} \approx \mathbf{R}_0^{-1} \mathbf{B}$ 



## Iterative method: Solving for ΔR

Approximate  $\Delta \mathbf{R}$  as  $(\mathbf{I} + skew(\overline{\alpha}))$ . I.e.,

$$\Delta \mathbf{R} \bullet \mathbf{v} \approx \mathbf{v} + \overline{\alpha} \times \mathbf{v}$$

for any vector v. Then, our least squares problem becomes

$$\min_{\Delta \mathbf{R}} \sum_{i} (\Delta \mathbf{R} \bullet \tilde{\mathbf{a}}_{i} - \tilde{\mathbf{b}}_{i})^{2} \approx \min_{\overline{\alpha}} \sum_{i} (\tilde{\mathbf{a}}_{i} - \tilde{\mathbf{b}}_{i} + \overline{\alpha} \times \tilde{\mathbf{a}}_{i})^{2}$$

This is linear least squares problem in  $\bar{\alpha}$ .

Then compute  $\Delta \mathbf{R}(\overline{\alpha})$ .



Note: Use trigonometric formulas to compute this

# Direct Iterative approach for Rigid Frame

Given 
$$\left\{\cdots,\left(\vec{\mathbf{a}}_{i},\vec{\mathbf{b}}_{i}\right),\cdots\right\}$$
, want to find  $\mathbf{F}=\arg\min\sum_{i}\left\|\mathbf{F}\vec{\mathbf{a}}-\vec{\mathbf{b}}\right\|^{2}$ 

Step 0: Make an initial guess **F**<sub>0</sub>

Step 1: Given  $\mathbf{F}_{k}$ , compute  $\vec{\mathbf{a}}_{i}^{k} = \mathbf{F}_{k}\vec{\mathbf{a}}_{i}$ 

Step 2: Compute  $\Delta \mathbf{F}$  that minimizes

$$\sum_{i} \left\| \Delta \mathbf{F} \vec{\mathbf{a}}_{i}^{k} - \vec{\mathbf{b}}_{i} \right\|^{2}$$

Step 3: Set  $\mathbf{F}_{k+1} = \Delta \mathbf{F} \mathbf{F}_{k}$ 

Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)



## Direct Iterative approach for Rigid Frame

To solve for 
$$\Delta \mathbf{F} = \operatorname{arg\,min} \sum_{i} \left\| \Delta \mathbf{F} \vec{\mathbf{a}}_{i}^{k} - \vec{\mathbf{b}}_{i} \right\|^{2}$$

$$\Delta \mathbf{F} \vec{\mathbf{a}}_{i}^{k} - \vec{\mathbf{b}}_{i} \approx \vec{\alpha} \times \vec{\mathbf{a}}_{i}^{k} + \vec{\varepsilon} + \vec{\mathbf{a}}_{i}^{k} - \vec{\mathbf{b}}_{i}$$

$$\vec{\alpha} \times \vec{\mathbf{a}}_{i}^{k} + \vec{\varepsilon} \approx \vec{\mathbf{b}}_{i} - \vec{\mathbf{a}}_{i}^{k}$$

$$sk(-\vec{\mathbf{a}}_{i}^{k})\vec{\alpha} + \vec{\varepsilon} \approx \vec{\mathbf{b}}_{i} - \vec{\mathbf{a}}_{i}^{k}$$

Solve the least-squares problem

$$\begin{bmatrix} \vdots & \vdots \\ sk(-\vec{\mathbf{a}}_{i}^{k}) & \mathbf{I} \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} \vec{\alpha} \\ \vec{\varepsilon} \end{bmatrix} \approx \begin{bmatrix} \vdots \\ \vec{\mathbf{b}}_{i} - \vec{\mathbf{a}}_{i}^{k} \\ \vdots \end{bmatrix}$$

Now set  $\Delta \mathbf{F} = [\Delta \mathbf{R}(\vec{\alpha}), \vec{\varepsilon}]$ 



## Direct Techniques to solve for R

 Method due to K. Arun, et. al., <u>IEEE PAMI</u>, Vol 9, no 5, pp 698-700, Sept 1987

Step 1: Compute

$$\mathbf{H} = \sum_{i} \begin{bmatrix} \tilde{a}_{i,x} \tilde{b}_{i,x} & \tilde{a}_{i,x} \tilde{b}_{i,y} & \tilde{a}_{i,x} \tilde{b}_{i,z} \\ \tilde{a}_{i,y} \tilde{b}_{i,x} & \tilde{a}_{i,y} \tilde{b}_{i,y} & \tilde{a}_{i,y} \tilde{b}_{i,z} \\ \tilde{a}_{i,z} \tilde{b}_{i,x} & \tilde{a}_{i,z} \tilde{b}_{i,y} & \tilde{a}_{i,z} \tilde{b}_{i,z} \end{bmatrix}$$

Step 2: Compute the SVD of  $\mathbf{H} = \mathbf{USV}^{t}$ 

Step 3:  $\mathbf{R} = \mathbf{V}\mathbf{U}^{\mathsf{t}}$ 

Step 4: Verify  $Det(\mathbf{R}) = 1$ . If not, then algorithm may fail.

• Failure is rare, and mostly fixable. The paper has details.



## Quarternion Technique to solve for R

- B.K.P. Horn, "Closed form solution of absolute orientation using unit quaternions", <u>J. Opt. Soc. America</u>, A vol. 4, no. 4, pp 629-642, Apr. 1987.
- Method described as reported in Besl and McKay, "A method for registration of 3D shapes", <u>IEEE</u>

  <u>Trans. on Pattern Analysis and Machine</u>

  Intelligence, vol. 14, no. 2, February 1992.
- Solves a 4x4 eigenvalue problem to find a unit quaternion corresponding to the rotation
- This quaternion may be converted in closed form to get a more conventional rotation matrix



## Digression: quaternions

Invented by Hamilton in 1843. Can be thought of as

4 elements:

$$\mathbf{q} = \left[ q_0, q_1, q_2, q_3 \right]$$

scalar & vector:

$$\mathbf{q} = s + \vec{\mathbf{v}} = \begin{bmatrix} s, \vec{\mathbf{v}} \end{bmatrix}$$

Complex number:

$$\mathbf{q} = q_0 + q_1 i + q_2 j + q_3 k$$

where 
$$i^2 = j^2 = k^2 = i j k = -1$$

Properties:

Linearity: 
$$\lambda \mathbf{q}_1 + \mu \vec{\mathbf{q}}_2$$

Linearity: 
$$\lambda \mathbf{q}_1 + \mu \mathbf{\vec{q}}_2 = \left[ \lambda s_1 + \mu s_2, \lambda \mathbf{\vec{v}}_1 + \mu \mathbf{\vec{v}}_2 \right]$$

$$\mathbf{q}^* = s - \vec{\mathbf{v}} = \left[ s, -\vec{\mathbf{v}} \right]$$

$$\mathbf{q}_1 \circ \mathbf{q}_2 = \left[ s_1 s_2 - \vec{\mathbf{v}}_1 \bullet \vec{\mathbf{v}}_2, s_1 \vec{\mathbf{v}}_2 + s_2 \vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2 \right]$$

$$\mathbf{q} \circ \vec{\mathbf{p}} = \mathbf{q} \circ \left[0, \vec{\mathbf{p}}\right] \circ \mathbf{q}^*$$

$$\|\mathbf{q}\| = \sqrt{s^2 + \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

### Digression continued: unit quaternions

We can associate a rotation by angle  $\theta$  about an axis  $\vec{n}$  with the unit quaternion:

$$Rot(\vec{\mathbf{n}}, \boldsymbol{\theta}) \Leftrightarrow \left[\cos \frac{\boldsymbol{\theta}}{2}, \sin \frac{\boldsymbol{\theta}}{2} \vec{\mathbf{n}}\right]$$

Exercise: Demonstrate this relationship. I.e., show

$$Rot((\vec{\mathbf{n}}, \theta) \cdot \vec{\mathbf{p}} = \left[\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{\mathbf{n}}\right] \circ \left[0, \vec{\mathbf{p}}\right] \circ \left[\cos\frac{\theta}{2}, -\sin\frac{\theta}{2}\vec{\mathbf{n}}\right]$$

Hint: Substitute and reduce to see if you get Rodrigues' formula.



### A bit more on quaternions

**Exercise:** show by substitution that the various formulations for quaternions are equivalent

#### A few web references:

http://mathworld.wolfram.com/Quaternion.html

http://en.wikipedia.org/wiki/Quaternion

http://en.wikipedia.org/wiki/Quaternions\_and\_spatial\_rotation

http://www.euclideanspace.com/maths/algebra/

realNormedAlgebra/quaternions/index.htm

**CAUTION:** Different software packages are not always consistent in the order of elements if a quaternion is represented as a 4 element vector. Some put the scalar part first, others (including cisst libraries) put it last.



## Rotation matrix from unit quaternion

$$\mathbf{q} = [q_0, q_1, q_2, q_3]; \quad ||\mathbf{q}|| = 1$$

$$\mathbf{R}(\mathbf{q}) = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$



## Unit quaternion from rotation matrix

$$\mathbf{R}(\mathbf{q}) = \begin{bmatrix} r_{xx} & r_{yx} & r_{zx} \\ r_{xy} & r_{yy} & r_{zy} \\ r_{xz} & r_{yz} & r_{zz} \end{bmatrix}; \quad a_0 = 1 + r_{xx} + r_{yy} + r_{zz}; \ a_1 = 1 + r_{xx} - r_{yy} - r_{zz} \\ a_2 = 1 - r_{xx} + r_{yy} - r_{zz}; \ a_3 = 1 - r_{xx} - r_{yy} + r_{zz} \end{bmatrix}$$

| $a_0 = \max\{a_k\}$                  | $a_1 = \max\{a_k\}$                  | $a_2 = \max\{a_k\}$                  | $a_3 = \max\{a_k\}$                  |
|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| $q_0 = \frac{\sqrt{a_0}}{2}$         | $q_0 = \frac{r_{yz} - r_{zy}}{4q_1}$ | $q_0 = \frac{r_{zx} - r_{xz}}{4q_2}$ | $q_0 = \frac{r_{xy} - r_{yx}}{4q_3}$ |
| $q_1 = \frac{r_{xy} - r_{yx}}{4q_0}$ | $q_1 = \frac{\sqrt{a_1}}{2}$         | $q_1 = \frac{r_{xy} + r_{yx}}{4q_2}$ | $q_1 = \frac{r_{xz} + r_{zx}}{4q_3}$ |
| $q_2 = \frac{r_{zx} - r_{xz}}{4q_0}$ | $q_2 = \frac{r_{xy} + r_{yx}}{4q_1}$ | $q_2 = \frac{\sqrt{a_2}}{2}$         | $q_2 = \frac{r_{yz} + r_{zy}}{4q_3}$ |
| $q_3 = \frac{r_{yz} - r_{zy}}{4q_0}$ | $q_3 = \frac{r_{xz} + r_{zx}}{4q_1}$ | $q_3 = \frac{r_{yz} + r_{zy}}{4q_2}$ | $q_3 = \frac{\sqrt{a_3}}{2}$         |



### Rotation axis and angle from rotation matrix

Many options, including direct trigonemetric solution. But this works:

```
[\vec{\mathbf{n}}, \theta] \leftarrow ExtractAxisAngle(\mathbf{R})
{
[s, \vec{\mathbf{v}}] \leftarrow ConvertToQuaternion(\mathbf{R})
return([\vec{\mathbf{v}} / || \vec{\mathbf{v}} ||, 2atan(s / || \vec{\mathbf{v}} ||))
}
```



### Quaternion method for R

Step 1: Compute

$$\mathbf{H} = \sum_{i} \begin{bmatrix} \tilde{a}_{i,x} \tilde{b}_{i,x} & \tilde{a}_{i,x} \tilde{b}_{i,y} & \tilde{a}_{i,x} \tilde{b}_{i,z} \\ \tilde{a}_{i,y} \tilde{b}_{i,x} & \tilde{a}_{i,y} \tilde{b}_{i,y} & \tilde{a}_{i,y} \tilde{b}_{i,z} \\ \tilde{a}_{i,z} \tilde{b}_{i,x} & \tilde{a}_{i,z} \tilde{b}_{i,y} & \tilde{a}_{i,z} \tilde{b}_{i,z} \end{bmatrix}$$

Step 2: Compute

$$\mathbf{G} = \begin{bmatrix} trace(\mathbf{H}) & \Delta^T \\ \Delta & \mathbf{H} + \mathbf{H}^T - trace(\mathbf{H})\mathbf{I} \end{bmatrix}$$

where 
$$\Delta^T = \begin{bmatrix} \mathbf{H}_{2,3} - \mathbf{H}_{3,2} & \mathbf{H}_{3,1} - \mathbf{H}_{1,3} & \mathbf{H}_{1,2} - \mathbf{H}_{2,1} \end{bmatrix}$$

Step 3: Compute eigen value decomposition of G

$$diag(\overline{\lambda}) = \mathbf{Q}^T \mathbf{G} \mathbf{Q}$$

Step 4: The eigenvector  $\mathbf{Q}_k = \left[q_0, q_1, q_2, q_3\right]$  corresponding to the largest eigenvalue  $\lambda_k$  is a unit quaternion corresponding to the rotation.



Let  $\mathbf{q} = s + \vec{\mathbf{v}}$  be the unit quaternion corresponding to  $\mathbf{R}$ . Let  $\tilde{\mathbf{a}}$  and  $\tilde{\mathbf{b}}$  be vectors with  $\tilde{\mathbf{b}} = \mathbf{R} \cdot \tilde{\mathbf{a}}$  then we have the quaternion equation

$$(s+\vec{\mathbf{v}}) \cdot (0+\tilde{\mathbf{a}})(s-\vec{\mathbf{v}}) = 0+\hat{\mathbf{b}}$$

$$(s+\vec{\mathbf{v}}) \cdot (0+\tilde{\mathbf{a}}) = (0+\tilde{\mathbf{b}}) \cdot (s+\vec{\mathbf{v}}) \quad \text{since } (s-\vec{\mathbf{v}})(s+\vec{\mathbf{v}}) = 1+\vec{\mathbf{0}}$$

Expanding the scalar and vector parts gives

$$-\vec{\mathbf{v}} \cdot \tilde{\mathbf{a}} = -\vec{\mathbf{v}} \cdot \tilde{\mathbf{b}}$$
$$s\vec{\mathbf{a}} + \vec{\mathbf{v}} \times \tilde{\mathbf{a}} = s\tilde{\mathbf{b}} + \tilde{\mathbf{b}} \times \vec{\mathbf{v}}$$

Rearranging ...

$$(\tilde{\mathbf{b}} - \tilde{\mathbf{a}}) \cdot \vec{\mathbf{v}} = 0$$

$$s(\tilde{\mathbf{b}} - \tilde{\mathbf{a}}) + (\tilde{\mathbf{b}} + \tilde{\mathbf{a}}) \times \vec{\mathbf{v}} = \vec{\mathbf{0}}_{3}$$

**NOTE**: This method works for any set of vectors  $\vec{a}$  and  $\vec{b}$ . We are using the symbols  $\tilde{a}$  and  $\tilde{b}$  to maintain consistency with the discussion of the previous method.



Expressing this as a matrix equation

$$\begin{bmatrix}
0 & (\tilde{\mathbf{b}} - \tilde{\mathbf{a}})^T \\
(\tilde{\mathbf{b}} - \tilde{\mathbf{a}}) & sk(\tilde{\mathbf{b}} + \tilde{\mathbf{a}})
\end{bmatrix} \begin{bmatrix} \underline{s} \\ \vec{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \underline{0} \\ \vec{\mathbf{0}}_3 \end{bmatrix}$$

If we now express the quaternion  $\mathbf{q}$  as a 4-vector  $\vec{\mathbf{q}} = \begin{bmatrix} s, \vec{\mathbf{v}} \end{bmatrix}'$ , we can express the rotation problem as the constrained linear system

$$\mathbf{M}(\vec{\mathbf{a}}, \vec{\mathbf{b}})\vec{\mathbf{q}} = \vec{\mathbf{0}}_4$$
$$\left| |\vec{\mathbf{q}}| \right| = 1$$



In general, we have many observations, and we want to solve the problem in a least squares sense:

min 
$$\|\mathbf{M}\vec{\mathbf{q}}\|$$
 subject to  $\|\vec{\mathbf{q}}\| = 1$ 

where

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}(\vec{\mathbf{a}}_1, \vec{\mathbf{b}}_1) \\ \vdots \\ \mathbf{M}(\vec{\mathbf{a}}_n, \vec{\mathbf{b}}_n) \end{bmatrix} \text{ and } n \text{ is the number of observations}$$

Taking the singular value decomposition of  $\mathbf{M} = \mathbf{U} \Sigma \mathbf{V}^T$  reduces this to the easier problem

$$\min \ \left\| \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \vec{\mathbf{q}}_{X} \right\| = \left\| \mathbf{U} \left( \boldsymbol{\Sigma} \vec{\mathbf{y}} \right) \right\| = \left\| \boldsymbol{\Sigma} \vec{\mathbf{y}} \right\| \ \text{subject to} \ \left\| \vec{\mathbf{y}} \right\| = \left\| \mathbf{V}^{T} \vec{\mathbf{q}} \right\| = \left\| \vec{\mathbf{q}} \right\| \ = 1$$

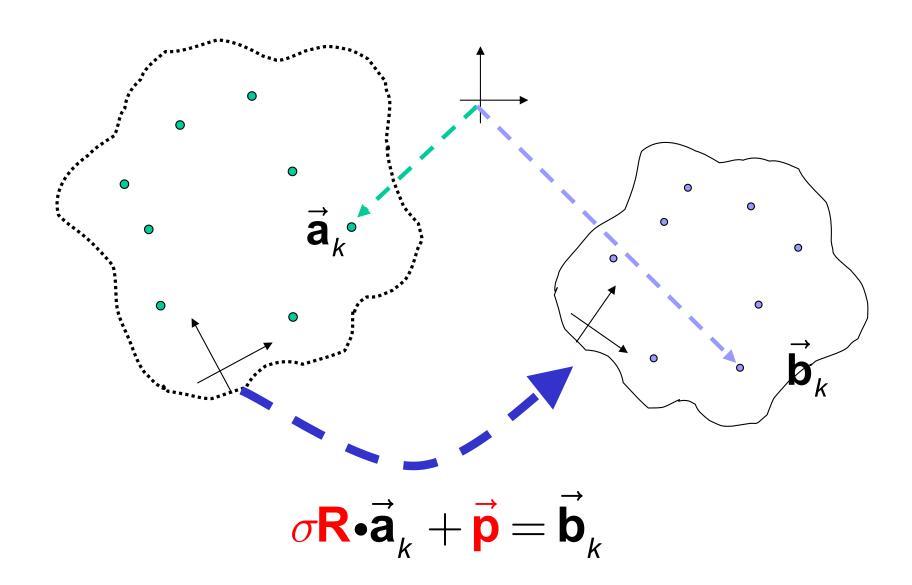
This problem is just

$$\min \|\Sigma \vec{\mathbf{y}}\| = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & \sigma_4 \end{bmatrix} \vec{\mathbf{y}} \quad \text{subject to } \|\vec{\mathbf{y}}\| = 1$$

where  $\sigma_i$  are the singular values. Recall that SVD routines typically return the  $\sigma_i \geq 0$  and sorted in decreasing magnitude. So  $\sigma_4$  is the smallest singular value and the value of  $\vec{\mathbf{y}}$  with  $\|\vec{\mathbf{y}}\| = 1$  that minimizes  $\|\Sigma\vec{\mathbf{y}}\|$  is  $\vec{\mathbf{y}} = \begin{bmatrix} 0,0,0,1 \end{bmatrix}^T$ . The corresponding value of  $\vec{\mathbf{q}}$  is given by  $\vec{\mathbf{q}} = V\vec{\mathbf{y}} = V_4$ . Where  $V_4$  is the 4th column of V.



## Non-reflective spatial similarity (rigid+scale)





# Non-reflective spatial similarity

Step 1: Compute

$$\overline{\mathbf{a}} = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathbf{d}}_{i}$$

$$\overline{\mathbf{b}}_{i} = \frac{1}{N} \sum_{i=1}^{N} \overline{\mathbf{b}}_{i}$$

$$\widetilde{\mathbf{b}}_{i} = \overline{\mathbf{b}}_{i} - \overline{\mathbf{b}}$$

Step 2: Estimate scale

$$\sigma = \frac{\sum_{i} \left\| \tilde{\mathbf{b}}_{i} \right\|}{\sum_{i} \left\| \tilde{\mathbf{a}}_{i} \right\|}$$

Step 3: Find R that minimizes

$$\sum_{i} (\mathbf{R} \cdot \left( \sigma \tilde{\mathbf{a}}_{i} \right) - \tilde{\mathbf{b}}_{i})^{2}$$

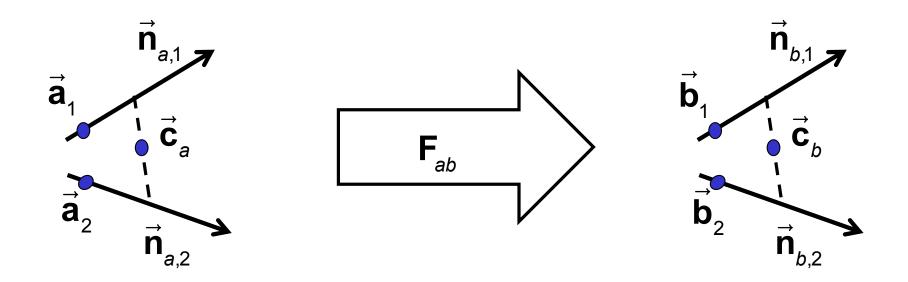
Step 4: Find  $\vec{p}$ 

$$\vec{p} = \vec{b} - R \cdot \vec{a}$$

Step 5: Desired transformation is

$$\mathbf{F} = SimilarityFrame(\mathbf{\sigma}, \mathbf{R}, \vec{\mathbf{p}})$$

### Registration from line pairs

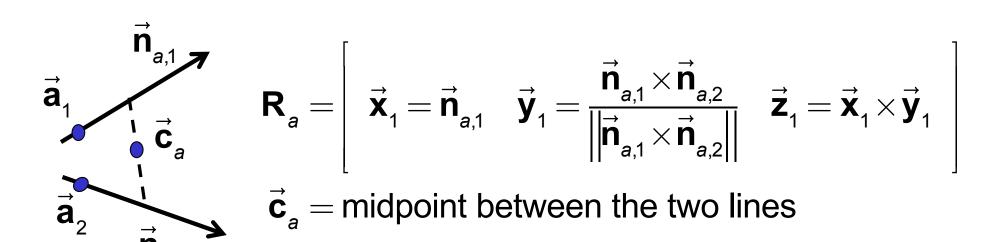


### Approach 1:

Compute  $\mathbf{F}_a = [\mathbf{R}_a, \mathbf{\vec{c}}_a]$  from line pair aCompute  $\mathbf{F}_b = [\mathbf{R}_b, \mathbf{\vec{c}}_b]$  from line pair b $\mathbf{F}_{ab} = \mathbf{F}_a^{-1} \mathbf{F}_b$ 



## Registration from line pairs

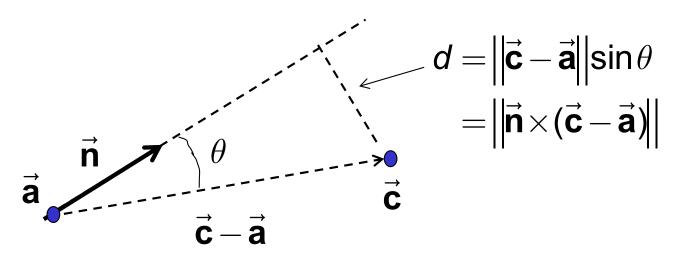


To get the midpoint:

Solve 
$$\begin{bmatrix} \vec{\mathbf{n}}_{a,1} & -\vec{\mathbf{n}}_{a,2} \end{bmatrix} \begin{bmatrix} \lambda \\ \nu \end{bmatrix} \approx \begin{bmatrix} \vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1 \end{bmatrix}$$
  
Then  $\vec{\mathbf{c}}_a = \frac{(\vec{\mathbf{a}}_1 + \lambda \vec{\mathbf{n}}_{a,1}) + (\vec{\mathbf{a}}_2 + \nu \vec{\mathbf{n}}_{a,2})}{2}$ 



### Distance of a point from a line



So, to find the closest point to multiple lines

$$\vec{\mathbf{c}} = \operatorname{argmin} \sum_{k} d_{k}^{2}$$

Solve this problem in a least squares sense:

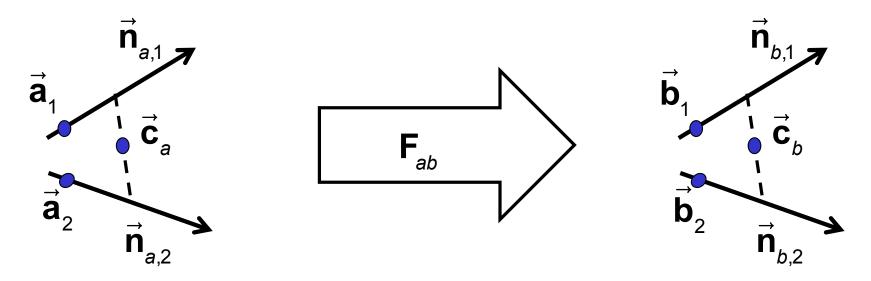
$$\vec{\mathbf{n}}_{k} \times (\vec{\mathbf{c}} - \vec{\mathbf{a}}_{k}) \approx \vec{\mathbf{0}} \text{ for } k = 1,...,n$$

Equivalently, solve

$$\vec{\mathbf{n}}_{k} \times \vec{\mathbf{c}} \approx \vec{\mathbf{n}}_{k} \times \vec{\mathbf{a}}_{k}$$
 for  $k = 1,...,n$ 



### Registration from multiple corresponding lines

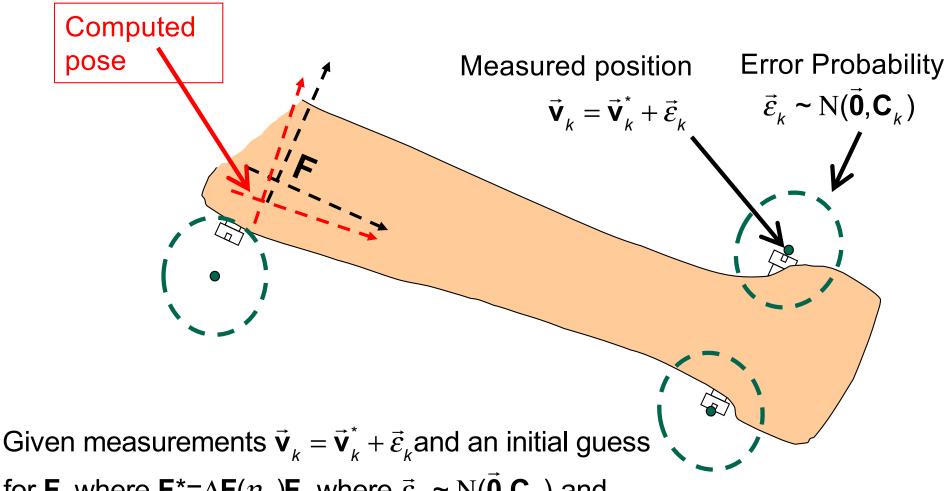


### Approach 2:

Solve 
$$\mathbf{R}_{ab}\vec{\mathbf{n}}_{b,k} \approx \vec{\mathbf{n}}_{a,k}$$
 for  $\mathbf{R}_{ab}$ 
Solve  $\vec{\mathbf{n}}_{a,k} \times \vec{\mathbf{c}}_a \approx \vec{\mathbf{n}}_{a,k} \times \vec{\mathbf{a}}_k$  for  $\vec{\mathbf{c}}_a$ 
Solve  $\vec{\mathbf{n}}_{b,k} \times \vec{\mathbf{c}}_b \approx \vec{\mathbf{n}}_{b,k} \times \vec{\mathbf{b}}_k$  for  $\vec{\mathbf{c}}_b$ 
 $\vec{\mathbf{p}}_{ab} = \vec{\mathbf{c}}_a - \mathbf{R}_{ab}\vec{\mathbf{c}}_b$ 



### **Probabilistic Estimation**

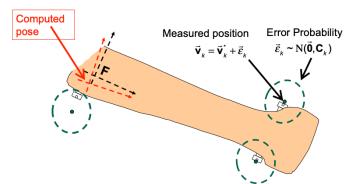


for **F**, where  $\mathbf{F}^* = \Delta \mathbf{F}(\eta_F) \mathbf{F}$ , where  $\vec{\varepsilon}_k \sim N(\vec{\mathbf{0}}, \mathbf{C}_k)$  and

 $\vec{\eta}_f = [\vec{\alpha}_F^T, \vec{\varepsilon}_F^T]^T \sim N(\vec{\mu}_F, \mathbf{C}_F)$ , we want to improve our estimate of **F** and determine a the probablity distribution for the corresponding  $\vec{\eta}_F$ 



### **Probabilistic Estimation**



Recall that  $\mathbf{v}_{k} + \vec{\varepsilon}_{k} = \Delta \mathbf{F}(\vec{\eta}_{F}) \mathbf{F} \vec{\mathbf{b}}_{k}$ , so that

$$\vec{\varepsilon}_k = \vec{\alpha}_k \times \vec{\mathbf{Fb}}_k + \vec{\varepsilon}_k = \mathbf{A}_k \vec{\eta}_k$$
, where  $\mathbf{A}_k = \begin{bmatrix} -sk(\vec{\mathbf{Fb}}_k) & \mathbf{I} \end{bmatrix}$ 

If we assume that the  $\vec{\varepsilon}_{_{k}}$  are independent, then

$$\operatorname{pr}(\mathbf{E} = [\vec{\varepsilon}_1, \dots, \vec{\varepsilon}_m] \mid \vec{\eta}_F) = \prod_{k} \operatorname{pr}(\vec{\varepsilon}_k \mid \vec{\eta}_F) = \prod_{k} \frac{\exp(-\vec{\eta}_F^T \mathbf{G}_k^{-1} \vec{\eta}_F / 2)}{\sqrt{(2\pi)^n |\mathbf{G}_k|}}$$

where 
$$\mathbf{G}_{k} = \mathbf{A}_{k}^{\mathsf{T}} \mathbf{C}_{k} \mathbf{A}_{k}$$
 and  $\mathbf{A}_{k} = \begin{bmatrix} -sk(\mathbf{F}\vec{\mathbf{b}}_{k}) & \mathbf{I} \end{bmatrix}$ 

$$L(E | \vec{\eta}_F) = \log(pr(E | \vec{\eta}_F)) = -\sum_{k} \vec{\eta}_F^T \mathbf{G}_k^{-1} \vec{\eta}_F / 2 - \text{constant}$$

Find the value  $\vec{\eta}_F^*$  that produces most likely value  $E^*$  for  $E \mid (\vec{\eta}_F = \vec{\eta}_F^*)$ 

$$\vec{\eta}_{\scriptscriptstyle F}^{\scriptscriptstyle \#} = \operatorname{argmax} \left( -\sum_{\scriptscriptstyle k} \vec{\eta}_{\scriptscriptstyle F}^{\scriptscriptstyle T} \mathbf{G}_{\scriptscriptstyle k}^{\scriptscriptstyle -1} \vec{\eta}_{\scriptscriptstyle F} \right) = \operatorname{argmin} \sum_{\scriptscriptstyle k} \vec{\eta}_{\scriptscriptstyle F}^{\scriptscriptstyle T} \mathbf{G}_{\scriptscriptstyle k}^{\scriptscriptstyle -1} \vec{\eta}_{\scriptscriptstyle F} = \operatorname{argmin} \ \vec{\eta}_{\scriptscriptstyle F}^{\scriptscriptstyle T} \left( \sum_{\scriptscriptstyle k} \mathbf{G}_{\scriptscriptstyle k}^{\scriptscriptstyle -1} \right) \vec{\eta}_{\scriptscriptstyle F}$$



### **Probabilistic Estimation**

Computed pose Measured position  $\vec{\mathbf{v}}_k = \vec{\mathbf{v}}_k + \vec{\varepsilon}_k$   $\vec{\varepsilon}_k \sim N(\vec{\mathbf{0}}, \mathbf{C}_k)$ 

Continuing from 
$$\vec{\eta}_F^\# = \operatorname*{argmin}_{\vec{\eta}_F} \vec{\eta}_F^\mathsf{T} \Big( \sum_k \mathbf{G}_k^{-1} \Big) \vec{\eta}_F$$

We can use this value to produce a most likely value **F**<sup>#</sup> for **F** 

$$\mathbf{F}^{\#} = \Delta \mathbf{F}(\vec{\eta}^{\#})\mathbf{F} = [\mathbf{R}(\vec{\alpha}^{\#}), \vec{\varepsilon}^{\#}] \bullet [\mathbf{R}, \vec{\mathbf{p}}] = [\mathbf{R}(\vec{\alpha}^{\#})\mathbf{R}, \mathbf{R}(\vec{\alpha}^{\#})\vec{\mathbf{p}} + \vec{\varepsilon}^{\#}]$$

Remember that  $\mathbf{R}(\vec{\alpha}^{\#}) \neq \mathbf{I} + sk(\vec{\alpha}^{\#})$ 

If we now update  $\mathbf{F} \leftarrow \mathbf{F}^{\#}$ , we want to know how confident we can be in this new estimated value. We can redefine  $\vec{\eta}_{F}$  so that

$$\mathbf{F}^* = \Delta \mathbf{F}(\vec{\eta}_F) \mathbf{F}$$
 where  $\vec{\eta}_F \sim N(\vec{\mathbf{0}}, \mathbf{C}_F)$ 

$$\mathbf{C}_F = \left(\sum_k \mathbf{G}_k^{-1}\right)^{-1} = \mathbf{Q}_F \Lambda_F^2 \mathbf{Q}_F^T$$
 where  $\Lambda_F^2$  is diagonal and  $\mathbf{Q}_F \mathbf{Q}_F^T = \mathbf{I}$ 

$$pr(\vec{\eta}_{F}) = \frac{\exp(-\vec{\eta}_{F}^{T} \mathbf{C}_{F}^{-1} \vec{\eta}_{F} / 2)}{\sqrt{(2\pi)^{n} |\mathbf{C}_{F}|}} = \frac{\exp(-\vec{\eta}_{F}^{T} \mathbf{C}_{F}^{-1} \vec{\eta}_{F} / 2)}{\sqrt{(2\pi)^{n} |\Lambda_{F}^{2}|}}$$

