

1

Segmentation \& Modeling

Images
Segmented
Models
Images

3

Brain Examples: Blake Lucas

Image Segmentation

- Process of identifying structure in 2D \& 3D images
- Output may be
- labeled pixels
- edge map
- set of contours

7

Automation Approaches

- Pixel-based
- Thresholding
- Region growing
- Machine learning approaches
- Edge/Boundary based
- Contours/boundary surface
- Deformable warping
- Deformable registration to atlases

Thresholding

3	5	7	3	4	2	1
2	4	9	10	22	9	3
3	5	12	11	15	10	3
5	6	11	9	17	19	1
2	3	11	12	18	16	2
3	6	8	10	18	9	5
4	6	7	8	3	3	1

Thresholding

3	5	7	3	4	2	1
2	4	9	10	22	9	3
3	5	12	11	15	10	3
5	6	11	9	17	19	1
2	3	11	12	18	16	2
3	6	8	10	18	9	5
4	6	7	8	3	3	1

Thresholding

3	5	7	3	4	2	1
2	4	9	10	22	9	3
3	5	12	11	15	10	3
5	6	11	9	17	19	1
2	3	11	12	18	16	2
3	6	8	10	18	9	5
4	6	7	8	3	3	1

Thresholding

3	5	7	3	4	2	1
2	4	9	10	22	9	3
3	5	12	11	15	10	3
5	6	11	9	17	19	1
2	3	11	12	18	16	2
3	6	8	10	18	9	5
4	6	7	8	3	3	1

13

"Partial volume" effects									
				80	60	90	100	100	
100	100	100	90	55	60	100	100		
		100	100	55	0	40	100		
			100	60	0	70	100		
		60	50	45	100	98			

14

15

"Partial volume" effects									
				80	60	90	100	100	
	100	100	100	90	55	60	100	100	
		100	100	55	0	40	100		
		100	60	0	70	100			
			60	50	45	100	98		

Between Scylla and Charybdis

- Problem: imagery contains non-linear gain artifacts that shift the intensity values in a non-stationary way
- If one knew the gain field, could correct image and use standard statistical method
- If one knew the tissue types, could predict the image and find the gain field correction
- Solution: Use Expectation/Maximization method to iteratively solve for gain field and tissue class, using probabilistic models

28

Deformable Surfaces

3	5	7	3	4	2	1
2	4	9	10	22	9	3
3	5	12	11	15	10	3
5	6	11	9	17	19	1
2	3	11	12	18	16	2
3	6	8	10	18	9	5
4	6	7	8	3	3	1

Deformable Surfaces

Deformable Surfaces

| 3 | 5 | 7 | 3 | 4 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 9 | 10 | 22 | 9 | 3 |
| 3 | 5 | 12 | 11 | 15 | 10 | 3 |
| 5 | 6 | 11 | 9 | 17 | 19 | 1 |
| 2 | 3 | 11 | 12 | 18 | 16 | 2 |
| 3 | 6 | 8 | 10 | 18 | 9 | 5 |
| 4 | 6 | 7 | 8 | 3 | 3 | 1 |

Deformable Surfaces

3	5	7	3	4	2	1
2	4	9	10	22	9	3
3	5	12	11	15	10	3
5	6	11	9	17	19	1
2	3	11	12	18	16	2
3	6	8	10	18	9	5
4	6	7	8	3	3	1

- Basic concepts proposed by Demetri Terzopoulis
- M. Kass, A. Witkin, and D. Terzopoulos, "Snakes:Active Contour Models", Intl Journal of Computer Vision, pp. 321-331, 1988.
- Many refinements since then

Traditional Active Contour

- Initialize a curve $\mathbf{X}(\mathrm{s})$ around or near the object boundary
- Find $\mathbf{X}(\mathrm{s})$ that minimizes:

$$
E=\int_{0}^{1}\left[\frac{1}{2}\left\{\alpha\left|\mathbf{X}^{\prime}(s)\right|^{2}+\beta\left|\mathbf{X}^{\prime \prime}(s)\right|^{2}\right\}+E_{\text {ext }}\{\mathbf{X}(s)\}\right] d s
$$

- Where $\alpha=0.001, \beta=0.09$ and
$E_{\text {ext }}(x, y)=-\|\nabla f(x, y)\|^{2}$
- How to find $\mathbf{X}(\mathrm{s})$?

Dynamic Equation From E-L Equation

- Euler-Lagrange equation

$$
\frac{\partial}{\partial s}\left(\alpha \frac{\partial \mathbf{X}}{\partial s}\right)-\frac{\partial^{2}}{\partial s^{2}}\left(\beta \frac{\partial^{2} \mathbf{X}}{\partial s^{2}}\right)-\nabla P(\mathbf{X})=0
$$

- Make X dynamic: $X(s) \rightarrow X(s, t)$

$$
\begin{aligned}
\mathbf{X}(s, t)= & {[X(s, t), Y(s, t)] } \\
& \text { where } s \in[0,1]
\end{aligned}
$$

- Now set "in motion" - gradient descent

$$
\gamma \frac{\partial \mathbf{X}}{\partial t}=\frac{\partial}{\partial s}\left(\alpha \frac{\partial \mathbf{X}}{\partial s}\right)-\frac{\partial^{2}}{\partial s^{2}}\left(\beta \frac{\partial^{2} \mathbf{X}}{\partial s^{2}}\right)-\nabla P(\mathbf{X})
$$

- General dynamical equation for snake:

$$
\gamma \mathbf{X}_{t}=\mathbf{F}_{\mathrm{int}}+\mathbf{F}_{\mathrm{ext}}
$$

3D Deformable Surface Model

Commonly done with triangle mesh

- Added complexity, time, especially to avoid selfintersection
Copyright © 1999-2022 R. H. Taylor
\qquad

Critique of Parametric Models

- Advantages:
- explicit equations, direct implementation
- automatic topology control
- Disadvantes:
- costly to prevent overlaps
- requires reparameterization to space out triangles

Basic Idea of Geometric Active Contours

$\mathbf{X}(s, t)$ The parametric curve
 function is usually a signed distance function

- Convention:
- positive on outside
- negative on inside

$$
\{\mathbf{x} \mid \phi(\mathbf{x}, t)=0\} \quad \text { The zero level set }
$$

GDM: Geometric Deformable Model

- Conventional level set function $\phi(x, t)$
- signed distance function
- Change the values of $\phi \rightarrow$ move the contour

46

Philosophy of GDMs

- Curve is not parameterized until the end of evolution
- tangential forces are meaningless
- forces must be derived from "spatial position" and "time" because location on the curve is meaningless
- Final contour is an "isocurve" (2D) or "isosurface" (3D)
- It has a "Eulerian" rather than "Lagrangian" framework
- Speed function incorporates internal and external forces
- Design of geometric model is accomplished by selection of $F(x)$, the speed function
- curvature terms takes the place of internal forces
- "Action" is near the zero level set
- "narrowband" methods are computationally more efficient

Critique of Geometric Deformable Models

－Advantages：
－Produce closed，non－self－intersecting contours
－Independent of contour parameterization
－Easy to implement：numerical solution of PDEs on regular computational grid
－Stable computations
－Disadvantages：
－topologically flexible
－some numerical difficulties with narrowband and level set function reinitialization

Computer Integrated Surgery 600．445／645

Topology Preserving Geometric Deformable Model（TGDM）

－Evolve level set function according to GDM PDE
－If level set function is going to change sign，check whether the point is a simple point
－If simple，permit the sign－change
－If not simple，prohibit the sign－change
－（replace the grid value by epsilon with same sign）
－（Roughly，this step adds 7\％computation time．）
－Extract the final contour using a connectivity consistent isocontour algorithm

X．Han，C．Xu，and J．L．Prince，＂A topology preserving level set method for geometric deformable models＂，IEEE Transactions on Pattern Analysis and Machine Intelligence，vol．25－6，pp．755－768， 2003.

Computer Integrated Surgery 600．445／645

54

TGDM for Inner Surface

$$
\Phi_{t}=\left(\omega_{1} R(\bar{x})+\omega_{2} \kappa(\bar{x})\right)\|\nabla \Phi\|
$$

Copyright © 1999-2022 R. H. Taylor

TGDM for Outer Surface

$$
\Phi_{t}=\left(\omega_{1} R(\bar{x})+\omega_{2} \kappa(\bar{x})\right)\|\nabla \Phi\|+\omega_{3} F_{\mathrm{GVF}}(\bar{x}) \cdot \nabla \Phi
$$

Copyright © 1999-2022 R. H. Taylor
(4) © Jerry L. Prince

3D Digital Connectivity

- In 3D there are three connectivities: 6, 18, and 26
- Four consistent connectivity pairs:
(foreground, background) $\rightarrow(6,18),(6,26),(18,6)$, $(26,6)$

Topology Preservation Principle

[Han et al., PAMI, 2003]

- Preserving topology is equivalent to maintaining the topology of the digital object
- The digital object can only change topology when the level set function changes sign at a grid point
- To prevent the digital object from changing topology, the level set function should only be allowed to change sign at simple points

[^0]Computer Integrated Surgery 600.445/645

Simple Point

- Definition: a point is simple if adding or removing the point from a binary object will not change the digital object's topology
- Determination: can be characterized locally by the configuration of its neighborhood (8- in 2D, 26- in 3D) [Bertrand \& Malandain 1994]
Simple

NonSimple
$0-\mathrm{CD}$ Derv L. Prince \qquad 60

Topology Preserving Geometric Deformable Model (TGDM)

- Evolve level set function according to GDM PDE
- If level set function is going to change sign, check whether the point is a simple point
- If simple, permit the sign-change
- If not simple, prohibit the sign-change
- (replace the grid value by epsilon with same sign)
- (Roughly, this step adds 7\% computation time.)
- Extract the final contour using a connectivity consistent isocontour algorithm
X. Han, C. Xu, and J. L. Prince, "A topology preserving level set method for geometric deformable models", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25-6, pp. 755-768, 2003.

64

Example: Sinuses \& Nasal Airway

Complex structures with thin boundaries

[3] Kainz, J. and Stammberger, H., "The roof of the anterior ethmoid: A place of least resistance in the skull base," American Journal of Rhinology 3(4), 191-199 (1989).
[4] Tao, H., Ma, Z., Dai, P., and Jiang, L., "Computer-aided three-dimensional reconstruction and measurement
of the optic canal and intracanalicular structures," The Laryngoscope 109(9), 1499-1502 (1999).

Deformable Registration of Template to Image

BB Avants, NJ Tustison, . Song, PA Cook, A Klein, and JC Gee, "A reproducible evaluation of ANTs similarity metric performance in brain image registration," Neurolmage 54(3), pp. 2033-2044, 2011.

- Basic approach has been used in one form or another for many years
- Emergence of modern convolutional neural nets with GPUs has made these approaches extremely successful recently
- However, require large amounts of training data

Copyright © 1999-2022 R. H. Taylor
Computer Integrated Surgery 600.445/645

Example: Segmentation of Femur in MRI

Cem M. Deniz, Spencer Hallyburton, Arakua Welbeck, Stephen Honig, Kyunghyun Cho, Gregory Chang," Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks', https://arxiv.org/abs/1704.06176, 2017.

Example: Deep Learning in Multi-Modality Segmentation

This paper has been published in October 2016 as: Moeskops, P., Wolterink, J.M., van der Velden, B.H.M., Gilhuijs, K.G.A., Leiner, T., Viergever, M.A., and Isgum, I. (2016). Deep learning for multi-task medical image segmentation in multiple modalities. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI; 2016, Part II, LNCS 9901, pp. 478-486
Copyright © 1999-2022 R. H. Taylor

Modeling

- Representation of anatomical structures
- Models can be
- Images
- Labeled images
- Boundary representations

FROM VOXELS TO SURFACES

Representing solids:

- B-REP - surface representation, d / s of vertices, edges, faces.
- CSG- composition of primirive solids
binary image

B-REP representation

Surface construction algorithms:

- 2D-based algrorithms
- 3D-based algorithms

Surface Representations

- Implicit Representations

$$
\{\bar{x} \mid f(\bar{x})=0\}
$$

- Explicit Representations
- Polyhedra
- Interpolated patches
- Spline surfaces
- ...

Fugure 4.7 Segmentation of veriebra defined by a set of GT sticce. Four seps of the deformation of a roughly spherical snake spline toward the veriebra are shown.

Polyhedral Boundary Reps

- Common in computer graphics
- Many data structures.
- FEV lists
- Winged edge
- Connected triangles
- etc.

FEV lists

- Explicit linked lists of faces, edges, vertices
- Many variations
- Key properties
- Convenient to traverse
- Lists are variable length
- Can be tricky to maintain consistency

Winged Edge

- Baumgart 1974
- Basic data structures
- winged edge (topology)
- vertex (geometry)
- face (surfaces)
- Key properties
- constant element size
- topological consistency

Connected Triangles

- Basic data structures
- Triangle (topology, surfaces)
- Vertex (geometry)
- Properties
- Constant size elements
- Topological consistency

Deformable Surfaces \& Level Sets

Blake Lucas - "Springls" (October 2010)

Tetrahedral Mesh Data Structure

- Vertex list
- x, y, z coordinates
- reference to one tetrahedron
- Tetrahedron list
- references to four vertices
- references to four face neighbors
- Properties such as density functions

Advantages of Tetrahedral Mesh

- Greatest degree of flexibility
- Data structure, data traversal, and data rendering are more involved
- Ability to better adapt to local structures
- Computational steps such as interpolation, integration, and differentiation can be done in closed form
- Finite element analysis
- Hierarchical structure of multiple resolution meshes

2D-based Methods for Shape Reconstruction

- Treat 3D volume as a stack of slices
- Outline
- Find contours in each 2D slice
- Match contours in successive slices

- Connect contours to create tiled surfaces (for boundary representation)
- Use contours to guide
subdivision of space between
slices into tetrahedra (for
volumes)

SURFACE CONSTRUCTION ALGORITHMS

2D-based algorithms

1. 2 D contour extraction
2. tiling of counours

Keppel (1975), Fuchs (1978), Christiansen(1981), Shantz (1981), Ganapathy (1982),
Cook (1983), Zyda (1987), Boissonnat (1988), Schwartz (1988)

Contour extraction

- Sequential scanning
- boundary following (random access to pixels)

Construct Tetrahedral Mesh from Contours

Tetrahedral Mesh Reconstruction from Contours

Tetrahedral Mesh Tiling

- Objectives
- Subdivide the space between adjacent slices into tetrahedra, slice by slice
- Method
- Two-steps tiling strategy
- 2D tiling and medial axis tiling
- 3D tiling

Metric Functions

- Maximize Volume, f_{v}
- Minimize Area, f_{a}
- Minimize Density Deviation, f_{d}
- Minimize Span Length, f_{s}

Current Metric Function:

- Combination of minimizing density deviation and span length
- Minimize $F=w_{1}{ }^{\star} f_{d}+w_{2}{ }^{*} f_{s}$

Tiling Constraints

- Non-intersection between tetrahedra
- Continuity between slices
- Continuity between layers

Correspondence Problem

- Examining the overlap and distance between contours on adjacent slices
- Graph based method

3D-based methods for Surface Reconstruction

- Segment image into labeled voxels
- Define surface and connectivity structure
- Can treat boundary element between voxels as a face or a vertex

3D-BASED ALGORITHMS

Block-form and Beveled-form representations of surface:

(a) Block-form representation.

(b) Beveled-form representation.

Block form methods

- "Cuberille"-type methods
- Treat voxels as little cubes
- May produce selfintersecting volumes
- E.g., Herman, Udupa

Beveled form methods

- "Marching cubes" type
- Voxels viewed as 3D grid points
- Vertices are points on line between adjacent grid points
- E.g. Lorensen\&Cline, Baker, Kalvin, many others

Block form to beveled form

Segmented voxels

Block form to beveled form

Duality between voxels and vertices on adjacency graph

Block form to beveled form

Label vertices based on segmentation labels

Block form to beveled form

Label vertices based on segmentation labels

Block form to beveled form

Boundary crosses edges between occupied and empty vertices

Block form to beveled form

Boundary crosses edges between occupied and empty vertices

Note: Choice of exact vertex placement is somewhat arbitrary.
 One choice is linear interpolation along edge based on density.

Beveled form basic approach

- Segment the 3D volume
- Scan 3D volume to process " 8 cells" sequentially
- Use labels of 8 cells as index in (256 element) lookup table to determine where surfaces pass thru cell
- Connect up topology
- Use various methods to resolve ambiguities

Marching Cubes Isosurface Algorithm

- How to "tile/triangulate" the zero level set?
- Consider values on corners of voxel (cube)
- Label as
- above isovalue
- below isovalue

- Determine the position of a triangular mesh surface passing through the voxel
- Linear interpolation

Connectivity Errors

Most isosurface codes use rules that lead to connectivity errors

- Multiple meshes
- typically solved by selecting the largest mesh
- Touching vertices, edges, and faces
- typically solved isovalue choice
- Ambiguous faces and cubes
- solved by use of a specially coded connectivity consistent MC algorithm

Wyvill, McPheters, Wyvill

Step 1: determine edges on each face of 8 cube

(a)

(b)

(c)
(c)

Figure 6: The seven cases for calculating vertices and ec

Step 2: Connect the edges up to make surfaces

Ambiguities

- Arise when alternate corners of a 4-face have different labels
- Ways to resolve:
- supersampling
- look at adjacencent cells

- tetrahedral tessallation

Tetrahedral Tessalation

- Many Authors
- Divide each 8-cube into tetrahedra
- Connect tetrahedra

- No ambiguities

> Figure 8: The two tetrahedral_partitionings of an 8-cell.

Beveled-form algorithms based on the tetrahedral decomposition of the 3D volume have been developed Payne and Toga [34], Hall and Warren [21], and Nielson et al. [29].
While this approach does provide a neat resolution to the ambiguous 8 -cell problem, it

125

Mesh Smoothing

- Motivations
- Noise/discretazition in CT data set
- Artifacts during segmentation

Classic Laplacian Smoothing Method

- Equation

$$
v_{i}^{\prime}=\frac{1}{\left|N_{i}\right|} \sum_{j \in N_{i}} v_{j}
$$

- Advantages

- Fast and easy
- Drawbacks
- Shrinkage
- Invalid elements

Enhanced Laplacian Smoothing Method

- Objective
- Reduce shrinkage
- Method
- Project back to boundary

$$
v_{i}^{\prime}=\operatorname{proj}\left(\frac{1}{\left|N_{i}\right|} \sum_{j \in N_{i}} v_{j}\right)
$$

Average and reproject

Average and reproject

Enhanced Laplacian Smoothing Method

- Objective
- Prevent invalid element
- Method
- Iterative assignment

$$
v_{i}^{\prime(0)}=\operatorname{proj}\left(\frac{1}{\left|N_{i}\right|} \sum_{j \in N_{i}} v_{j}\right)
$$

$$
v_{i}^{(k)}=\alpha \cdot v_{i}+(1-\alpha) v_{i}^{(k-1)}, 0 \leq \alpha \leq 1
$$

Enhanced Laplacian

Tetrahedral Mesh Models

| Model | Num of
 Vertices | Num of
 Tetrahedra | Num of
 Slices | Total Num of
 Voxels inside | Avg Num of
 voxels Per Tetra | Volume
 $\left(\mathrm{mm}^{3}\right)$ | Avg Vol. Per
 Tetra $\left(\mathrm{mm}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Femur | 6163 | 31,537 | 83 | $1,802,978$ | 57.1 | 312,107 | 9.9 |
| Pelvis | 8219 | 32,741 | 110 | $1,941,998$ | 59.3 | 347,070 | 10.6 |

Density Functions

- n-degree Bernstein polynomial in barycentric coordinate

$$
\begin{aligned}
& D(\mu)=\sum_{i+j+k+l=n}^{n} C_{i, j, k, l} B_{i, j, k, l}^{n}(\mu) \\
& C_{i, j, k, l} \quad \text { polynomial coefficient } \\
& B_{i, j, k, l}^{n}(\mu)=\frac{n!}{i!j!k!!!} \mu_{x}^{i} \mu_{y}^{j} \mu_{z}^{k} \mu_{w}^{l} \text { barycentric Bernstein basis }
\end{aligned}
$$

Barycentric Coordinate of Tetrahedron

- Local coordinate system
- Symmetric and normalized
- Every 3D position can be defined by an unique coordinate (x, y, z, w)
$V=x^{*} V_{a}+y^{*} V_{b}+z^{*} V_{c}+w^{*} V_{d}$
$x+y+z+w=1, V_{a}, V_{b}, V_{c}, V_{d}$ are coordinate of
Tetrahedron vertices
x, y, z, w within[0,1$]$ if V is inside the tetrahedron

Density Functions

- Advantages
- Efficient in storage
- Continuous function
- Explicit form
- Convenient to integrate, to differentiate, and to interpolate

Fitting Density Function

- Minimize the density difference between the density function and CT data set

$$
\begin{aligned}
& \min \sum_{\rho_{i} \in \Omega}\left(\left(\begin{array}{cccc}
\left.\left.\sum_{i+j+k+l=n}^{n} C_{i, j, k, l} B_{i, j, k, l}^{n}\left(\mu_{\rho_{i}}\right)\right)-T\left(\mu_{\rho_{i}}\right)\right)^{2} & \begin{array}{l}
\text { Sis the set of } \\
\text { sample voxels, } \\
T\left(\mu_{\rho i}\right) \text { is the density } \\
\text { value from the CT } \\
\text { data set. }
\end{array} \\
{\left[\begin{array}{cccc}
B_{1}\left(\mu_{\rho 1}\right) & B_{2}\left(\mu_{\rho 1}\right) & \ldots & B_{m}\left(\mu_{\rho 1}\right) \\
B_{1}\left(\mu_{\rho 2}\right) & B_{2}\left(\mu_{\rho 2}\right) & \ldots & B_{m}\left(\mu_{\rho 2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
B_{1}\left(\mu_{\rho s}\right) & B_{2}\left(\mu_{\rho s}\right) & \ldots & B_{m}\left(\mu_{\rho s}\right)
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
\vdots \\
C_{m}
\end{array}\right]=\left[\begin{array}{c}
T\left(\mu_{\rho 1}\right) \\
T\left(\mu_{\rho 2}\right) \\
\vdots \\
T\left(\mu_{\rho s}\right)
\end{array}\right] \begin{array}{l}
\text { s: number of sample } \\
\text { voxels } \\
\begin{array}{l}
\text { m: number of density } \\
\text { function coefficient, } \\
s>2 m
\end{array}
\end{array}\right.
\end{aligned}
$$

Accuracy vs Degree of Density Function

- Use CT data set as ground truth
- Cut an arbitrary plane through the model

Arbitrary Cutting Plane

Partitions by tetrahedra on cutting plane

141

Model Simplification

- Models used in CIS must be guaranteed to be accurate within known bounds
- But 3D models from medical images often are very complex, and require representations with large data structures.
- Algorithms using models are often computationally expensive, and computation costs go up with model complexity
- PROBLEM: reduce model complexity while preserving adequate accuracy

Model simplification

- Problem is also common in computer graphics
- There is a growing literature
- But many graphics techniques only care about appearance, and do not necessarily preserve accuracy or other properties (like topological connectivity) important for computational analysis
- Broadly, two classes of approaches
- Top down
- Bottom-up

Top down

- Active surfaces used in segmentation
- Deformable registration of an atlas to a patient
- E.g., skull atlas discussed in craniofacial lecture had about 5000 polygons (perhaps 15-20,000 triangles)
- Recursive approximations
- E.g., Pizer et al. "cores"

Bottom up methods

- Typically, start with very high detail model generated from CT images
- Large number of elements a consequence of small size of pixels \& way model is created
- Then merge nearby elements into larger elements
- E.g., "decimation" (Lorensen, et. al.)
- E.g., "superfaces" (Kalvin \& Taylor)
- E.g., Gueziec
- An excellent tutorial may be found in:
- David Luebke; A Developer's Survey of Polygonal Simplification Algorithms; IEEE Computer Graphics and Application, May 2001

Bottom-up merging

Source: David Luebke; A Developer's Survey of Polygonal Simplification Algorithms; IEEE Computer Graphics and Application, May 2001

[^0]: (8 mer © Jerry L. Prince

