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Segmentation & Modeling
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Credit: Eric Grimson
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Example: Bone Modeling from CT

CT Slices

Tetrahedral 
Mesh

Density 
Function fn

Density Model

Tetrahedral 
Mesh 

Simplification

Multiple 
Resolution 

Model

Contours
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Brain Examples: Blake Lucas
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Image Segmentation
• Process of identifying structure in 2D & 3D images
• Output may be

– labeled pixels
– edge map
– set of contours

6



4

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor
Credit: Eric Grimson
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Automation Approaches
• Pixel-based

– Thresholding
– Region growing
– Machine learning approaches

• Edge/Boundary based
– Contours/boundary surface
– Deformable warping
– Deformable registration to atlases

8
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“Partial volume” effects 
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Credit: Eric Grimson
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Credit: Eric Grimson
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Credit: Eric Grimson
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Deformable Surfaces
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• Basic concepts proposed by Demetri Terzopoulis
• M. Kass, A. Witkin, and D. Terzopoulos, "Snakes:Active Contour Models", Intl Journal of 

Computer Vision, pp. 321-331, 1988.  
• Many refinements since then
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Traditional Active Contour
• Initialize a curve X(s) around 

or near the object boundary
• Find X(s) that minimizes: 

• Where a = 0.001, b = 0.09 
and

• How to find X(s)? 

0 1
s

X(s)

© Jerry L. Prince
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Dynamic Equation From E-L Equation
• Euler-Lagrange equation

• Make X dynamic: X(s) → X(s,t)

• Now set “in motion” – gradient descent

• General dynamical equation for snake:

© Jerry L. Prince
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Example: Bone Modeling from CT

CT Slices

Tetrahedral 
Mesh

Density 
Function fn

Density Model

Tetrahedral 
Mesh 

Simplification

Multiple 
Resolution 

Model

Contours

Credit: Yao and Taylor
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Bone Structure

• Compact bone
• Spongy bone
• Medullary Cavity Medullary Cavity

Bone 
Structure

Compact Bone

Spongy Bone

Spongy 
Bone

Compact 
Bone

Compact 
Bone

Medullary 
Cavity

Credit: Yao and Taylor
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Bone Contour Extraction

Needle graph of Image force Bone Contours
Credit: Yao and Taylor
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Bone Contour Extraction
Closer-up view 

Needle graph of Image force Bone Contours
Credit: Yao and Taylor
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3D Deformable Surface Model

• Added complexity, time, especially to avoid self-
intersection

Commonly done with triangle mesh

43© Jerry L. Prince
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Critique of Parametric Models
• Advantages:

– explicit equations, direct implementation
– automatic topology control

• Disadvantes:
– costly to prevent overlaps
– requires reparameterization to space out triangles

44© Jerry L. Prince

44

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor

Basic Idea of Geometric Active Contours

• The level set 
function is 
usually a signed 
distance function

• Convention: 
– positive on 

outside
– negative on 

insidex

y

x

The zero level set

A level set function
The parametric curve

45© Jerry L. Prince
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[Osher & Sethian 88, Caselles 93, & Malladi 95]

-5.50-4.50-3.50-2.50-1.50-0.50 0.50 1.50

-4.50-4.08-3.26-2.34-1.37-0.40 0.58 1.57

-3.50-3.26-2.67-1.89-1.03-0.11 0.82 1.78

-2.50-2.34-1.89-1.25-0.50 0.33 1.20 2.12

-1.50-1.38-1.02-0.50 0.16 0.90 1.71 2.56

-0.50-0.40-0.11 0.33 0.90 1.57 2.31 3.10

0.50 0.58 0.82 1.21 1.71 2.31 2.98 3.72

1.50 1.57 1.78 2.11 2.56 3.10 3.72 4.40

GDM: Geometric Deformable Model
• Conventional level set function f(x,t)

– signed distance function
• Change the values of f è move the contour

46© Jerry L. Prince
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Philosophy of GDMs
• Curve is not parameterized until the end of evolution

– tangential forces are meaningless 
– forces must be derived from “spatial position” and 

“time” because location on the curve is meaningless
– Final contour is an “isocurve” (2D) or “isosurface” (3D) 
– It has a “Eulerian” rather than “Lagrangian” framework

• Speed function incorporates internal and external forces
– Design of geometric model is accomplished by 

selection of F(x), the speed function
– curvature terms takes the place of internal forces

• “Action” is near the zero level set
– “narrowband” methods are computationally more 

efficient

47© Jerry L. Prince
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Ventricle Segmentation

50© Jerry L. Prince

50

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor

Cortical Surface Segmentation

51© Jerry L. Prince

51



22

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor

Critique of Geometric Deformable Models
• Advantages:

– Produce closed, non-self-intersecting contours
– Independent of contour parameterization
– Easy to implement: numerical solution of PDEs on 

regular computational grid
– Stable computations

• Disadvantages:
– topologically flexible
– some numerical difficulties with narrowband and 

level set function reinitialization

52© Jerry L. Prince

52

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor

Topology Preserving Geometric Deformable 
Model (TGDM)

• Evolve level set function according to GDM PDE
• If level set function is going to change sign, check 

whether the point is a simple point
– If simple, permit the sign-change
– If not simple, prohibit the sign-change 
– (replace the grid value by epsilon with same sign)
– (Roughly, this step adds 7% computation time.)

• Extract the final contour using a connectivity 
consistent isocontour algorithm

53© Jerry L. Prince

X. Han, C. Xu, and J. L. Prince, "A topology preserving level set method 
for geometric deformable models", IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 25- 6, pp. 755-768, 2003. 
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Nested Deformable Surfaces

Pial
Surface

Inner 
Surface

Central 
Surface

TGDM-3

Initial WM 
Isosurface

TGDM-2TGDM-1

54© Jerry L. Prince
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TGDM for Inner Surface

Initial WM Isosurface Evolving GM/WM Interface

[Han et al., NeuroImage, 2004]

55© Jerry L. Prince
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TGDM for Central Surface

Initialize with GM/WM surface Evolving toward Central Surface

56© Jerry L. Prince
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TGDM for Outer Surface

Evolving toward Outer SurfaceStart from Central Surface

57© Jerry L. Prince
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• In 3D there are three connectivities: 6, 18, and 26
• Four consistent connectivity pairs:  

(foreground, background) → (6,18), (6,26), (18,6), 
(26,6)

3D Digital Connectivity

6-connectivity
18-connectivity 26-connectivity

© Jerry L. Prince 58
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Topology Preservation Principle

• Preserving topology is equivalent to 
maintaining the topology of the digital object

• The digital object can only change topology 
when the level set function changes sign at a 
grid point

• To prevent the digital object from changing 
topology, the level set function should only be 
allowed to change sign at simple points

[Han et al., PAMI, 2003]

© Jerry L. Prince 59
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Simple Point

• Definition: a point is simple if adding or removing 
the point from a binary object will not change the 
digital object’s topology 

• Determination: can be characterized locally by 
the configuration of its neighborhood (8- in 2D, 
26- in 3D) [Bertrand & Malandain 1994]

Simple
Non-

Simple

© Jerry L. Prince 60
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x is a Simple Point

0)( <F x

x

0)( >F x

x

(Connectivity happens to be irrelevant in this case)

61© Jerry L. Prince
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x is Not a Simple Point (if n=4)

0)( <F x 0)( >F xX

X

Digital connectivity assumption is crucial in this case 
62© Jerry L. Prince
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Topology Preserving Geometric Deformable 
Model (TGDM)

• Evolve level set function according to GDM PDE
• If level set function is going to change sign, check 

whether the point is a simple point
– If simple, permit the sign-change
– If not simple, prohibit the sign-change 
– (replace the grid value by epsilon with same sign)
– (Roughly, this step adds 7% computation time.)

• Extract the final contour using a connectivity 
consistent isocontour algorithm

63© Jerry L. Prince

X. Han, C. Xu, and J. L. Prince, "A topology preserving level set method 
for geometric deformable models", IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 25- 6, pp. 755-768, 2003. 
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Credit: Eric Grimson
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Example: Sinuses & Nasal Airway

Fovea ethmoidalis: 
separates the 

ethmoid cells from 
the anterior cranial 

fossa
Thickness: ~ 0.5 

mm[3]

Boundary between the 
sinuses and the orbit

Thickness: ~ 0.91 
mm[4]

[3] Kainz, J. and Stammberger, H., “The roof of the anterior ethmoid: A place of least resistance in the skull base,” 
American Journal of Rhinology 3(4), 191-199 (1989).
[4] Tao, H., Ma, Z., Dai, P., and Jiang, L., “Computer-aided three-dimensional reconstruction and measurement
of the optic canal and intracanalicular structures,” The Laryngoscope 109(9), 1499-1502 (1999).

Slide Credit: Ayushi Sinha

Complex structures with thin boundaries

65
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Automated Segmentation Workflow

Patient CTs

Template

New Patient CT

Deformed Template 

Deformable 
Registration

Adjusted to CT

A. Sinha, S. Leonard, A. Reiter, M. Ishii, R. H. Taylor, and G. D. Hager, "Automatic segmentation and statistical shape modeling of the paranasal
sinuses to estimate natural variations", in Proc. SPIE 9784, San Diego, Feb. 27, 2016.  pp. 97840D.1-8. 
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Template Creation

Slide Credit: Ayushi Sinha

BB Avants, P Yushkevich, J Pluta, D Minko, M Korczykowski, J Detre, JC Gee, “The optimal template 
effect in hippocampus studies of diseased populations," NeuroImage 49(3), p. 2457, 2010.

67
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Deformable Registration of Template to Image

BB Avants, NJ Tustison, . Song, PA Cook, A Klein, and JC Gee, “A reproducible evaluation of ANTs 
similarity metric performance in brain image registration," NeuroImage 54(3), pp. 2033-2044, 2011.

Slide Credit: Ayushi Sinha
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Adjustment of Template to Patient CT

[10] C. Xu and J. L. Prince, “Gradient vector flow: A new external force for snakes," in IEEE Computer Vision and Pattern Recognition, pp. 66-71, 1997.
[11] C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,", IEEE Transactions on Image Processing, 7, pp. 359-369, March 1998.

Slide Credit: Ayushi Sinha
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Results

Red contour: 
Segmentation 

via label 
transfer using 
deformable 
registration

Blue contour:
Hand-labeled 
gold standard

Green contour:
Improved 

segmentation 
using our 
method

A. Sinha, A. Reiter, S. Leonard, M. Ishii, G. D. Hager, and R. H. Taylor, "Simultaneous segmentation and correspondence 
improvement using statistical modes", in SPIE Medical Imaging, Orlando, 2017. 

Slide Credit: Ayushi Sinha
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Machine Learning Methods

Machine Learning 
Algorithm

Classification 
functionParameters

Training images 
with known 
segmentations

Patient Image

Segmented Image

• Basic approach has been used in one form or another for many years
• Emergence of modern convolutional neural nets with GPUs has made these 

approaches extremely successful recently
• However, require large amounts of training data

71
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Example: Segmentation of Femur in MRI

Cem M. Deniz, Spencer Hallyburton, Arakua Welbeck, Stephen Honig, Kyunghyun Cho, Gregory Chang,” Segmentation of the Proximal 
Femur from MR Images using Deep Convolutional Neural Networks’, https://arxiv.org/abs/1704.06176, 2017.
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Example: Deep Learning in Multi-Modality Segmentation

This paper has been published in October 2016 as: Moeskops, P., Wolterink, J.M., van der Velden, B.H.M., Gilhuijs, K.G.A., Leiner, T., 
Viergever, M.A., and Isgum, I. (2016). Deep learning for multi-task medical image segmentation in multiple modalities. In: Medical Image 
Computing and Computer-Assisted Intervention – MICCAI; 2016, Part II, LNCS 9901, pp. 478-486

73
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Modeling
• Representation of anatomical structures
• Models can be 

– Images
– Labeled images
– Boundary representations

75
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FROM VOXELS TO SURFACES

Representing solids:  
• B-REP - surface representation,
    d/s of vertices, edges, faces.
• CSG- composition of primirive solids

binary image        B-REP representation
Surface construction algorithms:
• 2D-based algrorithms
• 3D-based algorithms

76
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Surface Representations
• Implicit Representations

• Explicit Representations
– Polyhedra 
– Interpolated patches
– Spline surfaces
– ...

{ | ( ) }x f x = 0

Source: CIS p 73 (Lavallee image)

77
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• Common in computer graphics
• Many data structures.  

– FEV lists
– Winged edge
– Connected triangles
– etc.

Polyhedral Boundary Reps

78
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FEV lists

• Explicit linked lists of faces, 
edges, vertices

• Many variations
• Key properties

– Convenient to traverse
– Lists are variable length
– Can be tricky to 

maintain consistency

Face 1023

Vlist
Elist
Neighbors

79
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Winged Edge

• Baumgart 1974
• Basic data structures

– winged edge 
(topology)

– vertex (geometry)
– face (surfaces)

• Key properties
– constant element size
– topological 

consistency

PVT

NVT

PfaceNface

Pccwe
Pcwe

Nccwe
Ncwe

80
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Source: C. Cutting, CIS Book
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Connected Triangles

• Basic data structures
– Triangle (topology, surfaces)
– Vertex (geometry)

• Properties
– Constant size elements
– Topological consistency

Va

Na

Vb

Vc

Nb

Nc

82
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Anatomy of a Springl
Blake Lucas

2D 3D

2D 3D83

Slide credit: Blake Lucas’ PhD Thesis Defense, 2012

83
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Deformable Surfaces & Level Sets

Blake Lucas – “Springls” (October 2010)

84
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Tetrahedral Mesh Data Structure

• Vertex list
– x, y, z coordinates
– reference to one tetrahedron

• Tetrahedron list
– references to four vertices
– references to four face neighbors

• Properties such as density functions

Credit: Yao and Taylor
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Advantages of Tetrahedral Mesh
• Greatest degree of flexibility
• Data structure, data traversal, and data rendering are 

more involved
• Ability to better adapt to local structures
• Computational steps such as interpolation, 

integration, and differentiation can be done in closed 
form

• Finite element analysis 
• Hierarchical structure of multiple resolution meshes 

Credit: Yao and Taylor

86
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• Treat 3D volume as a stack of 
slices

• Outline
– Find contours in each 2D slice
– Match contours in successive 

slices
– Connect contours to create tiled 

surfaces (for boundary 
representation)

– Use contours to guide 
subdivision of space between 
slices into tetrahedra (for 
volumes)

2D-based Methods for Shape Reconstruction

89
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SURFACE CONSTRUCTION ALGORITHMS

2D-based algorithms
1. 2D contour extraction
2.  tiling of counours

Keppel (1975), Fuchs (1978), Christiansen (1981), Shantz (1981), Ganapathy (1982),
Cook (1983), Zyda (1987), Boissonnat (1988), Schwartz (1988)

 Contour extraction
• Sequential scanning
• boundary following (random access to pixels)

90
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Example: Bone Modeling from CT

CT Slices

Tetrahedral 
Mesh

Density 
Function fn

Density Model

Tetrahedral 
Mesh 

Simplification

Multiple 
Resolution 

Model

Contours

Credit: Yao and Taylor
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Construct Tetrahedral Mesh from Contours

 

f(x)

CT 
Slices

Contour 
Extraction

Tiling Branching

Modeling

Raw Tetrahedral 
Mesh Model

Constraints
Metric 

Functions

Tetrahedral Mesh Reconstruction from Contours

Smoothed  
Tetrahedral 
Mesh Model

Smoothing

Credit: Yao and Taylor
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Tetrahedral Mesh Tiling
• Objectives

– Subdivide the space between adjacent slices into 
tetrahedra, slice by slice

• Method
– Two-steps tiling strategy

• 2D tiling and medial axis tiling
• 3D tiling

Credit: Yao and Taylor
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Tiling Strategy

Contours

2D Tiling

Medial Axis Tiling

3D Tiling Result

Credit: Yao and Taylor
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Metric Functions
• Maximize Volume, fv
• Minimize Area, fa
• Minimize Density Deviation, fd
• Minimize Span Length, fs

Current Metric Function:
- Combination of minimizing density deviation and span 

length
- Minimize F = w1*fd+w2*fs

Credit: Yao and Taylor
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Tiling Constraints
• Non-intersection between tetrahedra
• Continuity between slices
• Continuity between layers

b

ca

d

e

b

ca

d e
Non-intercrossing

Intercrossing
Intercrossing   

between tetrahedra

Continuity constraint 
between slices Continuity constraint 

between layers

Credit: Yao and Taylor
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Correspondence Problem
• Examining the overlap and distance between 

contours on adjacent slices
• Graph based method

Contour Correspondence

Credit: Yao and Taylor
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Branching Problem
• Branching Between layers

– Convert to tiling of 3 contours
• Branching Between contours

– Composite contour
– Split contour

Credit: Yao and Taylor

Composite ContourSplit Contour
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3D-based methods for Surface Reconstruction
• Segment image into 

labeled voxels
• Define surface and 

connectivity structure
• Can treat boundary 

element between voxels 
as a face or a vertex v1 v2

v1 v2

Bndry
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3D-BASED ALGORITHMS

Block-form and Beveled-form representations of surface:
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Block form methods

• “Cuberille”-type methods
• Treat voxels as little cubes
• May produce self-

intersecting volumes
• E.g., Herman, Udupa
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Ref: Udupa , CIS Book, p47
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Beveled form methods
• “Marching cubes” type
• Voxels viewed as 3D 

grid points
• Vertices are points on 

line between adjacent 
grid points

• E.g. Lorensen&Cline, 
Baker, Kalvin, many 
others
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Block form to beveled form

Segmented voxels
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Block form to beveled form

Duality between voxels and vertices on adjacency graph

105

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor

Block form to beveled form

Label vertices based on segmentation labels
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Block form to beveled form

Label vertices based on segmentation labels
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Block form to beveled form

Boundary crosses edges between occupied 
and empty vertices
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Block form to beveled form

Boundary crosses edges between occupied 
and empty vertices

Note: Choice of exact 
vertex placement is 
somewhat arbitrary.  
One choice is linear 
interpolation along 
edge based on 
density.
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Beveled form basic approach

• Segment the 3D volume
• Scan 3D volume to process “8-

cells” sequentially
• Use labels of 8 cells as index 

in (256 element) lookup table 
to determine where surfaces 
pass thru cell

• Connect up topology
• Use various methods to 

resolve ambiguities

Source: Kalvin survey
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Marching Cubes Isosurface Algorithm

• How to “tile/triangulate” 
the zero level set? 

• Consider values on 
corners of voxel (cube)

• Label as
– above isovalue
– below isovalue

• Determine the position of 
a triangular mesh surface 
passing through the voxel
– Linear interpolation

> 0.5

< 0.5

Voxel values

© Jerry L. Prince 112
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Connectivity Errors

• Multiple meshes 
– typically solved by selecting the largest mesh

• Touching vertices, edges, and faces
– typically solved isovalue choice

• Ambiguous faces and cubes
– solved by use of a specially coded connectivity 

consistent MC algorithm

Most isosurface codes use rules 
that lead to connectivity errors 

113© Jerry L. Prince
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Ambiguous Faces

Two possible tilings:

115© Jerry L. Prince

115

Computer Integrated Surgery 600.445/645   Copyright ©  1999-2022 R. H. Taylor

Ambiguous Cubes

Two possible tilings:

116© Jerry L. Prince
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Wyvill, McPheters, Wyvill

Step 1: determine edges on each face of 8 cube

Step 2: Connect the edges up to make surfaces
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Ambiguities
• Arise when alternate 

corners of a 4-face 
have different labels

• Ways to resolve:
– supersampling
– look at adjacencent 

cells
– tetrahedral 

tessallation
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Tetrahedral Tessalation

• Many Authors
• Divide each 8-cube into 

tetrahedra
• Connect tetrahedra
• No ambiguities
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Source: C. Cutting, CIS Book
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Mesh Smoothing

 

f(x)

CT 
Slices

Contour 
Extraction

Tiling Branching

Modeling

Raw Tetrahedral 
Mesh Model

Constraints
Metric 

Functions Smoothed  
Tetrahedral 
Mesh Model

Smoothing
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Mesh Smoothing
• Motivations

– Noise/discretazition  in CT data set
– Artifacts during segmentation
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Classic Laplacian Smoothing Method

• Equation

∑
∈

=
iNj
j

i
i v
N

v 1'

•Advantages

• Fast and easy

•Drawbacks

• Shrinkage

• Invalid elements

vi

vj1

vj2

vj3

vj4

vj5

vi’
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Enhanced Laplacian Smoothing Method

• Objective
– Reduce shrinkage

• Method
– Project back to boundary

∑
∈

=
iNj
j

i
i v

N
projv )1(' Original 

Boundary

Classic 
Laplacian

Enhanced 
Laplacian 
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Average and reproject
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Average and reproject
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Enhanced Laplacian Smoothing Method

• Objective
– Prevent invalid element

• Method
– Iterative assignment

∑
∈

=
iNj
j

i
i v

N
projv )1()0('

10,)1( )1(')(' ≤≤−+⋅= − ααα k
ii

k
i vvv

vi

vj1

vj2 vj3

vj4

vj5
vi’

vi

vj1

vj2 vj3

vj4

vj5

vi’

Classic Laplacian

Enhanced Laplacian
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Mesh Smoothing Results

a) Before Smoothing b) After Smoothing
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Tetrahedral Mesh Models

Model Num of 
Vertices

Num of 
Tetrahedra

Num of 
Slices

Total Num of 
Voxels inside

Avg Num of 
voxels Per Tetra

Volume 
(mm3)

Avg Vol. Per 
Tetra (mm3)

Femur 6163 31,537 83 1,802,978 57.1 312,107 9.9
Pelvis 8219 32,741 110 1,941,998 59.3 347,070 10.6
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Example: Bone Modeling from CT

CT Slices

Tetrahedral 
Mesh

Density 
Function fn

Density Model

Tetrahedral 
Mesh 

Simplification

Multiple 
Resolution 

Model

Contours
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Density Functions

• n-degree Bernstein polynomial in barycentric coordinate

∑
=+++

=
n

nlkji

n
lkjilkji BCD )()( ,,,,,, µµ

lkjiC ,,, polynomial coefficient

l
w

k
z

j
y

i
x

n
lkji lkji

n
B µµµµµ

!!!!
!)(,,, = barycentric Bernstein basis
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Barycentric Coordinate of Tetrahedron
• Local coordinate system
• Symmetric and normalized
• Every 3D position can be defined by an unique 

coordinate (x, y, z, w)
V = x*Va+y*Vb+z*Vc+w*Vd
x+y+z+w=1, Va, Vb, Vc, Vd are coordinate of 

Tetrahedron vertices
x,y,z,w within[0,1] if V is inside the tetrahedron
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Density Functions
• Advantages

– Efficient in storage
– Continuous function
– Explicit form
– Convenient to integrate, to differentiate, and to 

interpolate
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Fitting Density Function

• Minimize the density difference between the density 
function and CT data set
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Ωis the set of 
sample voxels, 
T(μρi) is the density 
value from the CT 
data set. 

s: number of sample 
voxels 

m: number of density 
function coefficient, 

s>2m
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Accuracy vs Degree of Density Function

• Use CT data set as ground truth
• Cut an arbitrary plane through the model

Arbitrary Cutting Plane Partitions by tetrahedra 
on cutting plane
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Accuracy vs Degree of Density Function 
(cont’)

Degree 0 1 2 3 4 5 6 7 8
Coeff Number 1 4 10 20 35 56 84 120 165

Avg. Density 
Err (%)

3.291 1.583 0.766 0.442 0.298 0.216 0.167 0.149 0.128

Ground Truth n=1 n=2 n=3 n=4n=0
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Example: Bone Modeling from CT

CT Slices

Tetrahedral 
Mesh

Density 
Function fn

Density Model

Tetrahedral 
Mesh 

Simplification

Multiple 
Resolution 

Model

Contours
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Model Simplification
• Models used in CIS must be 

guaranteed to be accurate within 
known bounds

• But 3D models from medical 
images often are very complex, and 
require representations with large 
data structures.

• Algorithms using models are often 
computationally expensive, and 
computation costs go up with model 
complexity

• PROBLEM: reduce model 
complexity while preserving 
adequate accuracy

~350,000 triangles!
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Model simplification
• Problem is also common in computer graphics

– There is a growing literature
– But many graphics techniques only care about 

appearance, and do not necessarily preserve 
accuracy or other properties (like topological 
connectivity) important for computational analysis

• Broadly, two classes of approaches
– Top down 
– Bottom-up 
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Top down
• Active surfaces used in segmentation

• Deformable registration of an atlas to a patient
– E.g., skull atlas discussed in craniofacial lecture 

had about 5000 polygons (perhaps 15-20,000 
triangles)

• Recursive approximations
– E.g., Pizer et al. “cores”
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Bottom up methods
• Typically, start with very high detail model generated from CT 

images
– Large number of elements a consequence of small size of pixels 

& way model is created

• Then merge nearby elements into larger elements
– E.g., “decimation” (Lorensen, et. al.)
– E.g., “superfaces” (Kalvin & Taylor)
– E.g., Gueziec

• An excellent tutorial may be found in:
– David Luebke; A Developer’s Survey of Polygonal Simplification 

Algorithms; IEEE Computer Graphics and Application, May 2001
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Bottom-up merging

Source: David Luebke; A Developer’s Survey of Polygonal Simplification 
Algorithms; IEEE Computer Graphics and Application, May 2001
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