
Anomaly detection for treatment planning and a learning 
health system in radiotherapy 

Computer Integrated Surgery II
Spring, 2018

Daniel Yuan and Vincent Qi
Mentors: Dr. Todd McNutt, Pranav Lakshminarayanan

• Our primary goal was to improve the integrity of clinical 

radiation therapy data. By improving the quality of clinical 

data available to physicians, we can minimize the risk 

involved with radiotherapy for cancer patients.

• We developed a fully commented API and a code 

framework that can help identify potentially anomalous data 

with statistical detection and analysis. The framework allows 

for the modular insertion of various detection rules.

• We also developed some of our own detection modules 

based off of previous research. These allowed us to explore 

areas where anomalies occur. They also serve as examples 

for future users.

Engineering Research Center for Computer Integrated Surgical Systems and Technology

Figure 3: Example of Mask

Figure 1: UML diagram of code framework

Patient

Data with 

no error

Errors 

found

0 35 2

1 40 1

2 25 2

3 39 3

5 26 1

6 40 1

7 41 6

8 16 0

9 40 1

Figure 4: Example of table of errors 

found for individual patients

Introduction

• A large proportion of patient radiotherapy data is collected 

manually by physicians. For example, contour model slices 

are individually collected and spliced together. Daily patient 

assessments are filled out and then manually inputted in a 

database.

• Data collection is a repetitive and tiring process, making it 

prone to human error. Example include missing contour 

slices and inputting incorrect patient variables.

• Data is also being collected on a massive scale. The 

amount of data collected means that going through a 

database manually is a difficult task. 

• While error detection methods exist they often have limited 

use due to either being too specific or being not flexible 

enough for use on other databases that method was not 

built for.

The Problem

• We designed a framework that allows for the modular 

insertion of various detection rules in order to allow active 

an approach using constantly updated clinical databases.

• We tested several validation algorithms, such as continuity 

and dosing maps maximums.

• Our API is fully documented so that future users can easily 

write their own integrity checks and run it over the database.

Our Solution

• We were able to create a framework that allows for the 

insertion of various detection algorithms. Most of the 

process is automated. The user only needs to write the 

actual detection method with a structured input and output 

format.

• We were able test our framework with several of our own 

detection algorithms in order to validate that it works.

• We were able to query the database for over a thousand 

patients and determine the existence of anomalous contour 

maps. We also were able to determine which patients had 

anomalous dosing maps and questionable assessments.

Outcomes and Results

• Since the API works, the next major step would be to 

implement more error detection modules and enable 

physicians to analyze more types of erroneous data.

• Increase flexibility of framework to enable output beyond 

error/no-error, such as a scale on the likelihood of a data 

point to have errors.

• Optimize the code for efficiency for running over a large 

database. For example, implement parallelism and improve 

query structures.

Future Work

• The more flexible a code needs to be, the harder it is to 

implement. To many complicated relationships in the 

framework can cause confusions and errors.

• Traversing across a database is highly memory intensive 

and a balance of memory usage and speed in required for 

optimization.

Lessons Learned

• Programing and design: Vincent Qi

• Programing and design: Daniel Yuan

Credits

• Thanks to Todd Mcnutt and Pranav Lakshminarayanan

for being our mentors

• Thank you to Dr. Russ Taylor for leading the class

Support and Acknowledgements

Figure 2: Example of documentation

• We implement the framework structure in Python. Python is 

used because it allows for simple portability and OS 

compatibility. It also has many existing packages that can 

be used to augment and improve the framework.

• The framework is based off of oncotools, a prebuilt library 

by the McNutt lab for querying the oncospace database. 

Code Implementation


