
User interface to extract radio-morphologic
features for refined dose-toxicity analysis in

radiotherapy
Alaleh Azhir, William Franceshchi, Santiago Appiani

Mentors: Dr. Todd McNutt and Pranav Lakshminarayanan

May 10, 2018

Computer Integrated Surgery II

Dr. Russell Taylor and Ehsan Azizi

Spring 2018

1. Abstract

2. Introduction

3. Technical Approach

 a) Front End

 b) Back End

 c) Installation and Usage

4. Results

5. Significance

6. Management Summary

7. Acknowledgement

8. References

1. Abstract

Radiation therapy for neck and head tumors has been very effective, but usually leads to
undesired outcomes such as speech impairment. Previous work has indicated that some regions
are more sensitive to radiation exposure, thus analyzing radiotherapy dose distribution data in
patients and their associated outcomes could assist in developing better treatment plans. The
current tools available to oncologists and radiologists for visualization and analysis of
radiotherapy dose-distribution data are limited in functionality and ease of use, thus, we
developed a user interface with 3D rendering allows physicians to better analyze dose
distributions before treatment and make necessary adjustments to the treatment plan.

2. Introduction

Radiation therapies, sometimes accompanied with surgery or chemotherapy, provides a very
effective way to treat many malignant head and neck tumors [1]. However, they are usually
accompanied with undesired complications such as decreased saliva production, speech
impairment, and soft tissue necrosis, thus reducing patients’ quality of life. Research has shown
that certain regions of the brain are more sensitive than others to radiation exposure [2], thus to
create better outcomes it is best to analyze radiation therapy treatments and reduce radiation to
those regions. Although targeted therapy has been quite successful in minimizing radiation to
areas outside of tumor, this method still to some degree radiates undesired regions based on the
morphology of the tumor. The best treatment plan for patients would be one that maximizes
radiation dose to the tumor and minimizes it to the critical regions that are very susceptible to
damage by radiation. In order to study various treatment plans and compare them to each other, it
is necessary to compare the region that these treatment plans radiated, the dose distribution
across this region, and the patient outcome.

Luijik, et al. has shown that exposure to radiation in ductal region of parotid gland is
significantly associated with reduced saliva production after the treatment [3]. This result can be
confirmed through parotid dose toxicity analysis. Dose toxicity analysis since the 1970s has
predominantly been reliant upon dose value histogram (DVH) curves. Applying traditional
whole organ-based analyses to head and neck structures is difficult and inconsistent because
these structures are small and easily misidentified or overlooked in analysis. Research has shown
that a more localized, voxel-based approach would provide clinical insights in radiation therapy
of the bladder, prostate, and gastrointestinal tract [4-7]. For example, Monti et al showed that a
voxel-based approach to dose toxicity analysis can shed light upon the mechanisms underlying a
specific complication following radiation therapy: radiation-induced acute dysphagia (RIAD)
[7].

The aim of our tool is thus to provide a way for physicians who lack programming skills a simple
method to quantitatively analyze and visualize dose distributions within organs before, during
and after treatment. It provides a user interface with 3D rendering would allow physicians to
better analyze dose distributions by allowing segmentation into smaller regions to allow for finer
detailed analysis. This tool can help simplify the workflow for physicians who need to compare
treatments by allowing them visualize and segment various treatment plans organs and their
associated DVH curves.

3. Methods

3.1. Back-End Web Development

The server side was written entirely in python. Our mentor, Pranav, provided code for 1) making
SQL queries from the Oncotools database, 2) computing DVH curves and point clouds, and 3)
segmentation tools. The backend work consisted of constructing a python web framework for
passing data via XHR (XMLHttpRequest) requests with the web application, integrating
Pranav’s code into the python web framework to perform appropriate calculations, and making
the data compatible with JSON format and easily integrable with the web application.

Runweb.py is the python file which, when run at the command line, sets up the web framework.
The python web framework consists of a list of URLs, with each URL corresponding to a class.
The web framework interacts with the web application in a similar manner as calling a function.
When the web app makes an XHR request to one of the URLs in the web framework, the python
code in the corresponding class runs and returns JSON formatted data, as shown in Figure 1 -
XHR Request. Generally, the web-based application sends necessary information to the python
framework via XHR request to a specific URL. The python framework will run the code in the
class specified by the URL and return a JSON object holding DVH or point cloud data to the
web-based application. Specific details for the classes and URLs in the web framework can be
found in the Code Documentation section of the Documentation.

Figure 1 - XHR
Requests. Example XHR
request showing
JavaScript front end and
python back end. Web
app front end makes an
XHR request to a URL.
This prompts the python
web framework to run
code in a class
corresponding to the URL
and return a JSON object.
The web app can parse
this JSON object.	

3.2 Front-End Web Development:

The front end was written using the three languages of HTML, CSS, and JavaScript. We utilized
various JavaScript Libraries such as Select.js and D3.js (versions 3 and 4). The front end
communicates with the back end in order to a) run analyses such as segmentation, b) send the
selection of user in order to fetch relevant data, c) creating DVH curves and d) getting the
coordinates for the 3D organ. The communication between the front-end and back-end can be
seen in Figure 2.

Figure 2 - Code Communication. Client side and
server side communication. The data and download
options are shown here. Server side, written in
python, returns DVH and point cloud data when
given necessary patient and dose information.

First step for the user utilizing our tool is to select region(s) of interest, for the select boxes, we
used the Select.js library to allow for simultaneous multiple selection and allow for querying
choices by typing the name of the region instead of scrolling. After the first selection, the next
select boxes are updated based on the previous choices, showing only relevant options (i.e.
displaying only patients affected by a certain region of interest.

The second part is the visualization of a 3D organ.
For this, we utilize D3.js version 4, as it allows for
better dragging and visualization options. An
example of the two parotid glands visualized can
be found in Figure 3. We also graph the x, y, z
axes, whose size are determined by the data points
that are visualized, thus, their size automatically
adjust as the organ is changed. Furthermore, the
visualization of x, y, z axes allows for the user to
better track by what angle and by how much, they
are rotating the organs when they click and drag
their mouse on the interface.

 Figure 3 – 3D Region of Interest visualization.

The second part is the visualization of the DVH curve. After the selections are made, this data is
sent to the backend, and a DVH curve is calculated using the python back-end layer. The scatter
plot x and y coordinates are then sent to the front-end layer for visualization. For this, we utilize
D3.js version 3, as the library for a scatter plot was more readily available. The fact that we were
utilizing 2 versions of D3.js on one HTML page caused a clashing of two libraries, causing one
of the graphs (3D or DVH) to break. To address this issue, we created two different HTML
pages, each of which uses its own version of D3.js library and used HTML iframe tag to view

both HTML pages from the main HTML page. An example of the two parotid glands DVH
curves visualization can be found in Figure 4.

Figure 4 – DVH Curve. This graph is made for left and right parotid.

Front-end also allows the option for the user to download the DVH plot they created in case they
need it for further analysis. The last part of the page allows for segmentation of the region of
interests and creates new DVH curves for smaller segments. The visualization however is
performed in the same way. The result of segmentation of the two parotid can be found in the
results section.

3.3 Installation and Usage:
Back-End:
First, it is necessary to install python X.X.X from https://www.python.org/. Once it is installed,
one would need to install web.py web framework from http://webpy.org/ to serve incoming
HTTP requests. This can be installed using pip using the following command: “pip install
web.py”. After installing the web framework, it is necessary to install the oncotools python
library in order to interact with a Oncospace database. To install this library, we visited the
following link: http://oncospace.github.io/oncotools/index.html# and ran: “python setup.py
install” from the source directory. The necessary dependencies for this library are:
schema==0.6.7, pyodbc, numpy, scipy, scikit-learn, matplotlib, pandas and pydicom.

Front-End:
To service the web application, we decided to use XAMPP. XAMPP-Virtual Machine can be
installed from https://www.apachefriends.org/index.html. At the present date, we used (PHP
7.2.4). Once XAMPP is download, it is necessary to install it by opening the downloaded file.
When it is finished installing, open XAMPP and press on “Start”. This will start up the Debian

virtual machine that will contain the Apache web server. The status icon should turn green and
an IP address should now be visible. This IP address is the IP address that has been assigned to
the virtual machine. Inside XAMPP, switch to the “Volumes” tab and press on the “Mount”
button. Once it is successfully mounted, press on “Explore”. This should open up a new Finder
window where you will be located inside the file system of the virtual machine. Open up the
folder called “lamp” and then the folder called “htdocs”. Inside this “htdocs” folder, remove all
of the files and folders and place in all of the HTML and JavaScript code.

Usage:
To start the python web framework from command line, simply run:
 $ python runweb.py
To access the web application, use the IP address provided by XAMPP and open up your
browser to:

http://<IP_ADDRESS>/

4. Results:

The UI allows users to run through the entire DVH workflow, select segmentation tools, and
perform addition DVH analysis on the segmentations. The UI also displays a 3D visualization of
the selected ROIs. In addition, the following features were added: 1) generate DVH curves for all
patients with selected ROIs 2) generate a “mini” DVH from user input dosages 3) download any
DVH generated using the UI. All of these features are shown and explained in figures 3 and 4 -
Graphical Workflow.

Figure 3 - Graphical Workflow. Full website is shown. Yellow number labels correspond to
the core workflow, consisting of generating DVHs for selected ROIs, segmenting the selected
ROI, and generating DVHs for segments. Blue labels correspond to auxiliary analysis and DVH
download features. Each step is explained in detail in Figure 4.

Workflow ID Description Client Side 1 Server Side 2

1 - User selects ROIs to filter
patient list.
- Click ‘Submit’ to fetch patient
list.

- getPatients(...)
- populates patient select box
- populates all ROI select
boxes

- getp class accesses
oncotools database to return
patient list with specified ROIs

2 - User selects Patient
- Click ‘Submit’ to fetch
available doses

- getDoses(...)
- populates dose grid select
box

- getd class accesses
oncotools database to return
available dose grids for patient

3 - User selects Dose
- Click ‘Submit’ to fetch DVH
and point cloud data for ROIs
and patient selected steps 1 &
2

- getDVH(...); getVol(...)
- stores DVH data and point
cloud data for selected ROIs in
session storage

- getdvh class accesses
oncotools database and
returns JSON object holding
DVHs for all ROI
- getvol class returns JSON
object holding point clouds for
all ROI

4 - Click ‘Display DVHs’ to
display DVHs for all ROIs for
patient

- scatterplot.html calls display()
- written in dvh.js - to display
dvh data stored in session
storage from step 3

n/a

5 - Click ‘Update’ to display point
clouds for all ROIs for patient

- 3d.html calls init() - written in
3d.js - to display point cloud
data stored in session storage
from step 3

n/a

6 - User selects ROI None until step 7 None until step 7

7 - User selects segmentation
tool
- Click ‘Analyze’ to fetch dVH
and point cloud data for
segmentations

- segtools(...) will call
appropriate server side
segmentation tool
- stores DVH data and point
cloud data for segmentations
in session storage

- one of 4 classes for
segmentation tools returns
JSON object holding DVHs
and point clouds for each
segmentation

8 - Click ‘Display DVHs’ to
display DVHs for all segments
of ROI

- scatterplot_seg.html calls
display() - written in dvh_seg.js
- to display dvh data stored in
session storage from step 7

n/a

9 - Click ‘Update’ to display point
clouds for all segments of ROI

- 3d_seg.html calls init() -
written in 3d.js - to display
point cloud data stored in
session storage from step 7

n/a

10 - Click ‘Batch Analysis’ to
getch DVHs for all patients
with specified ROIs
- Click ‘Download’ to download
.csv with all of the DVHs

- getBatch() starts the DVH
fetching process in the
background
- downloadBatchCSV(...)
downloads csv of all the DVHs

- runbatch class iterates
through all patients and
specified DVHs and return
JSON object holding all DVH
data

11 - User selects ROI
- Click ‘Download’ to download
.csv with DVH data for
specified patient and ROI

- downloadCSV(...) downloads
.csv of DVH for specified ROI

n/a

12 - User inputs doses; will get
corresponding volume
proportion at each dose
- Click ‘DVH’ to get volumes
- Click ‘Download’ to download
DVH data

- pickDVH(...) fetches volume
proportions corresponding to
input doses
- downloadPickCSV(...)
download .csv of DVH

- pickDVH class iterates
through each input dose and
calculates the corresponding
volume; constructs and returns
a DVH

13 - User selects segmentation
- Click ‘Download’ to download
.csv with DVH data for
specified segmentation

- downloadSegCSV(...)
downlaods .csv of DVH for
specified segmentation

n/a

1. All client side functions are located in startup.js, and called by index.html. Only the 3D and DVH plots

differ in that they (workflow ID #s 4, 5, 8, and 9) use functions in 3d.js, dvh.js, and dvh_seg.js which are
called by 3d.html, 3d_seg.html, scatterplot.html, and scatterplot_seg.html.

2. All client side functionality is in runweb.py.

Figure 4 - Graphical Workflow Description. Detailed explanation of each step, including client
side and server-side actions.

To help guide the user through the DVH workflow, several considerations and small features
were added to the UI. First, the labels for steps 1-3 in the Graphical Workflow (Figure 3) are
highlighted when the user should move on to the next step. Next, a blank loading screen mask
covers the screen when the user attempts to calculate DVH/point clouds. Also, all ‘download’
and some ‘submit’ buttons are inactive until their functionality is ready (necessary variables
calculated).

5. Significance:

Despite the fact that radiotherapy has been very successful in treating various forms of head and
neck tumors, it can lead to harmful side effects by radiating other nearby regions that are
susceptible. To reduce these side effects, further studies need to be done by physicians to
examine which treatment options have better outcomes, and what is the does distribution of such
treatment options to the organ. Prior to the emergence of computerized planning and precision
medicine, these types of decisions were usually made through experience as the doctors learned
which general direction the radiation should point to and for how long. However, currently, as
the number of patient reports and outcomes increase every day, and their relevant data is stored
in the hospital systems, physicians should have the ability to go through this big data and discern
various patterns that relate treatments with outcomes. One of the main ways to find patterns is
through visual analysis, and for this purpose we have developed our framework.

Workflow ID Description Client Side 1 Server Side 2

1 - User selects ROIs to filter
patient list.
- Click ‘Submit’ to fetch patient
list.

- getPatients(...)
- populates patient select box
- populates all ROI select
boxes

- getp class accesses
oncotools database to return
patient list with specified ROIs

2 - User selects Patient
- Click ‘Submit’ to fetch
available doses

- getDoses(...)
- populates dose grid select
box

- getd class accesses
oncotools database to return
available dose grids for patient

3 - User selects Dose
- Click ‘Submit’ to fetch DVH
and point cloud data for ROIs
and patient selected steps 1 &
2

- getDVH(...); getVol(...)
- stores DVH data and point
cloud data for selected ROIs in
session storage

- getdvh class accesses
oncotools database and
returns JSON object holding
DVHs for all ROI
- getvol class returns JSON
object holding point clouds for
all ROI

4 - Click ‘Display DVHs’ to
display DVHs for all ROIs for
patient

- scatterplot.html calls display()
- written in dvh.js - to display
dvh data stored in session
storage from step 3

n/a

5 - Click ‘Update’ to display point
clouds for all ROIs for patient

- 3d.html calls init() - written in
3d.js - to display point cloud
data stored in session storage
from step 3

n/a

6 - User selects ROI None until step 7 None until step 7

7 - User selects segmentation
tool
- Click ‘Analyze’ to fetch dVH
and point cloud data for
segmentations

- segtools(...) will call
appropriate server side
segmentation tool
- stores DVH data and point
cloud data for segmentations
in session storage

- one of 4 classes for
segmentation tools returns
JSON object holding DVHs
and point clouds for each
segmentation

8 - Click ‘Display DVHs’ to
display DVHs for all segments
of ROI

- scatterplot_seg.html calls
display() - written in dvh_seg.js
- to display dvh data stored in
session storage from step 7

n/a

9 - Click ‘Update’ to display point
clouds for all segments of ROI

- 3d_seg.html calls init() -
written in 3d.js - to display
point cloud data stored in
session storage from step 7

n/a

10 - Click ‘Batch Analysis’ to
getch DVHs for all patients
with specified ROIs
- Click ‘Download’ to download
.csv with all of the DVHs

- getBatch() starts the DVH
fetching process in the
background
- downloadBatchCSV(...)
downloads csv of all the DVHs

- runbatch class iterates
through all patients and
specified DVHs and return
JSON object holding all DVH
data

11 - User selects ROI
- Click ‘Download’ to download
.csv with DVH data for
specified patient and ROI

- downloadCSV(...) downloads
.csv of DVH for specified ROI

n/a

12 - User inputs doses; will get
corresponding volume
proportion at each dose
- Click ‘DVH’ to get volumes
- Click ‘Download’ to download
DVH data

- pickDVH(...) fetches volume
proportions corresponding to
input doses
- downloadPickCSV(...)
download .csv of DVH

- pickDVH class iterates
through each input dose and
calculates the corresponding
volume; constructs and returns
a DVH

13 - User selects segmentation
- Click ‘Download’ to download
.csv with DVH data for
specified segmentation

- downloadSegCSV(...)
downlaods .csv of DVH for
specified segmentation

n/a

1. All client side functions are located in startup.js, and called by index.html. Only the 3D and DVH plots

differ in that they (workflow ID #s 4, 5, 8, and 9) use functions in 3d.js, dvh.js, and dvh_seg.js which are
called by 3d.html, 3d_seg.html, scatterplot.html, and scatterplot_seg.html.

2. All client side functionality is in runweb.py.

Our platform enables the physicians, who do not necessarily have any technical background, to
run dose toxicity analysis on their regions of interests for various patients. It also allows for
segmentation of organs into smaller regions and running the DVH curves on the smaller regions.
As the paper by Monti [8] suggested, this finer analysis enabled by segmentation can lead to
better analysis and can improve treatment planning.

6. Management Summary:

Who did what? William worked on setting up the server-side, communications between the
front-end and back-end using XHR requests, segmentation and the DVH plots on the front-end.
Santiago worked on writing segmentation tools and doing data exporting using the csv format.
Alaleh worked on the front end, creating the 3D visualization, solving clashes between the two
D3.js libraries functioning simultaneously, and enabling querying and multiple choices for the
select boxes options using Select library.

Accomplished vs. Planned Deliverables: Our deliverables and their status are as follows:

Minimum: (completed)

• A UI for visualizing organs in 3D, calculating DVH curves, and running python analysis
scripts from the JavaScript layer

• Documentation

Expected: (completed)

• A UI for segmenting and analyzing organs in 3D using a list of segmentation options.
• Dose-volume data analysis scripts are integrated and can be performed on segments of

organs.
• Results of the analysis can be exported.

Maximum: (ongoing)

• An interactive UI for segmenting and analyzing organs in 3D with a flexible
segmentation as indicated by the user in addition to the existing ones. (additional
segmentation feature ongoing)

• Create and export DVH data for batch of patients (completed)
• Extract specific points on DVH given list of doses (completed)
• User friendly - help direct user step by step & notify user with loading screen for long

processes (completed)

We accomplished all minimum and expected deliverables. Currently, the only maximum
deliverable not completed is the additional segmentation feature which is written however not
yet tested. We plan for this to be fully implemented by the end of weekend, as it can further help
analyze the data by creating a more flexible segmentation methods.

Future Steps: As future work, additional feature and segmentation tools can be added to the user
interface. Color coordination between the 3D organ and DVH curves can help further clarify the
information. The interface currently is run locally and can later be set up to run in a dedicated
server. After usage by oncologists and radiologists, their feedback could help improve the tools
by adding other visualization and analysis features.

What we learned: This project allowed us to gain some experience with D3.js, HTML and CSS
languages. We also learned about JSON data formatting and various ways to connect python
layer to the JavaScript layer. By performing the seminar presentation we learned about the
implications of radiotherapy, its side effects, improvements in radiotherapy treatment analysis
such as voxel-based dose toxicity analysis, and big data and its implications for precision
medicine.

7. Acknowledgements

We would like to thank to our mentors Pranav and Dr. McNutt. They guided us through this
process, helped us define our targets and how to approach them. They also provided the
segmentation tools and the test data needed to build the interface. We would also like to thank
Dr. Taylor for his support, guidance, and feedback.

8. References

[1] Tolentino, E. de S., Centurion, B. S., Ferreria, L. H. C., de Souza, A. P., Damante, J. H., &
Rubira-Bullen, I. R. F. (2011) Oral adverse effects of head and neck radiotherapy: literature
review and suggestion of a clinical oral care guideline for irradiated patients. Journal of Applied
Oral Science, 19(5), 448–454.
[2] 25- Prott FJ, Handschel J, Micke O, Sunderkötter C, Meyer U, Piffko J. Long-term
alterations of oral mucosa in radiotherapy patients. Int J Radiat Oncol Biol Phys.
2002;54(1):203-10.
[3] Luijk, P. V., Pringle, S., Deasy, J. O., Moiseenko, V. V., Faber, H., Hovan, A, ... Coppes, R.
P. (2015). Sparing the region of the salivary gland containing stem cells preserves saliva
production after radiotherapy for head and neck cancer. Science Translational Medicine, 7(305).
[4] Huang, B. T. et al. Different definitions of esophagus influence esophageal toxicity
prediction for esophageal cancer patients administered simultaneous integrated boost versus
standard-dose radiation therapy. Sci Rep 7, 120 (2017).
[5] Acosta, O. et al. Voxel-based population analysis for correlating local dose and rectal toxicity
in prostate cancer radiotherapy. Phys Med Biol 58, 2581–95 (2013).
[6] Wortel, R. C. et al. Dose-surface maps identifying local dose-effects for acute gastrointestinal
toxicity after radiotherapy for prostate cancer. Radiother Oncol 117, 515–20 (2015).
[7] Palma, G. et al. A Voxel-Based Approach to Explore Local Dose Differences Associated
With Radiation-Induced Lung Damage. Int J Radiat Oncol Biol Phys 96, 127–33 (2016).
[8] S. Monti, G. Palma, V. D'Avino, M. Gerardi, G. Marvaso, D. Ciardo, R. Pacelli, B. A.
Jereczek-Fossa, D. Alterio and L. Cella, "Voxel-based analysis unveils regional dose differences
associated with radiation-induced morbidity in head and neck cancer patients," Scientific
Reports, 3 August 2017.

