HOLISTIC DATA ACQUISITION FRAMEWORK FOR ROBOTIC SURGICAL SKILL ASSESSMENT

Team: Scott Pourshalchi, Giacomo Taylor
Mentors: Dr. Jeremy Brown, Dr. Anand Malpani
GOALS

Minimum: hardware & software system capable of collecting synchronized streams of robot kinematic and workspace interaction for time-series data (4/5/18)

Expected: collect pilot data from users of a wide skill range; additional software tools for visualizing data and detecting trends/patterns (4/26/18)

Maximum: perform statistical analyses on pilot data, suggest significant features for use in machine learning applications (5/17/18)
PURPOSE

Robot-assisted minimally invasive surgery (RAMIS) is quickly becoming the prescribed method of treatment for many different routine and non-routine surgical procedures.

- There is a need to ensure that all robotic surgeons have a minimal level of skill proficiency before they operate on patients.

- Current methods of skill assessment rely almost exclusively on structured human grading which can be subjective, tedious, time consuming, cost ineffective (raters are practicing physicians).

The goal of this project is to develop a system that can collect performance data of a surgeon performing RAMIS, collect pilot data, and investigate for trends to make suggestions for future procedures and ML algorithms.
Dependency Updates

<table>
<thead>
<tr>
<th>Dependency</th>
<th>Proposed Solution</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to mock OR</td>
<td>Appropriate forms submitted to LCSR office</td>
<td>Complete</td>
</tr>
<tr>
<td>DaVinci training</td>
<td>Training session with Dr. Malpani</td>
<td>Complete</td>
</tr>
<tr>
<td>Access to existing code repositories</td>
<td>Access to Dr. Brown’s code given, access to Dr. Malpani’s code given after signing of NDA (API from Intuitive Surgical)</td>
<td>Complete</td>
</tr>
<tr>
<td>Smart task board/ Accelerometer</td>
<td>Malfunctioning motherboard, new board is installed, tested</td>
<td>Complete</td>
</tr>
<tr>
<td>PC to handle data acquisition</td>
<td>Test system on PC in mock OR, if not operational obtain new PC</td>
<td>Complete** (capture card)</td>
</tr>
<tr>
<td>Schedules of clinicians</td>
<td>Need to accommodate busy schedules of clinicians for pilot data</td>
<td>Pending</td>
</tr>
</tbody>
</table>
CAPTURE CARD ISSUE

- Intended use is to record video for human graders to evaluate surgical skill of users.

- **Problem** – Computer does not recognize current capture card when plugged in.

- **Solution** – Purchase new capture card, replace current one.

 - Consult with mentors on 4/3/18, purchase by 4/6/18

- **Contingency Plan** – Project is not dependent on functioning capture card, will continue to test system without recording video
Updates to the Deliverables/Milestones

<table>
<thead>
<tr>
<th></th>
<th>Initial Deliverables</th>
<th>Updated Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>• Functional computer
• Program to integrate two systems
• User manual/ documentation</td>
<td>• Functional computer
• Program to integrate two systems
• User manual/ documentation</td>
</tr>
<tr>
<td>Expected</td>
<td>• Collect pilot data
• Implement machine learning algorithms</td>
<td>• Collect pilot data
• Program for data visualization, feature extraction</td>
</tr>
<tr>
<td>Maximum</td>
<td>• Write new IRB proposal
• Evaluate machine learning algorithms</td>
<td>• Statistically significant metrics
• Machine learning feature suggestions</td>
</tr>
</tbody>
</table>
SOLUTION OVERVIEW

Dr. Malpani

ROS wrapper
(written by Anton Degeut)

Logger

Data collection and processing, visualization, feature extraction

Statistical analyses, ML feature suggestions

Dr. Brown
LOGGER ARCHITECTURE (MINIMAL)

ISI console

Teensy microcontroller

Logger
- Basic signal processing, frame transformations
- Clock sync
- Basic signal processing

Session log

ROS subscription

Serial listener
DATA COLLECTION (EXPECTED)

- Added to existing IRB proposal with no (current) need for amendments
 - Peg transfer and ring walk
 - Collection at MISTIC (4/13, 4/20)
- Concurrently development of user manual and documentation

- Multi-modal tracking:
 - Surgeon’s manipulators
 - Tool tip/end effectors
 - Endoscope camera

- Collecting time-series data:
 - Position
 - Velocity
 - Acceleration
 - Interaction forces

- Calculating discrete features from signal data
FEATURE EXTRACTION (EXPECTED)

- Develop software tools (and documentation for) time-series data visualization, analysis
 - Continuing off previous work -> max, min, variance, etc.
 - Investigate new features based on pilot data trends
STATISTICAL ANALYSES (MAXIMAL)

- Data set analysis to test correlations of extracted features with proxy measures
 - Resident standing
 - Number of RAMIS procedures performed
- Sensitivity analyses
 - PCA
 - Clustering metrics
- Suggest features to be used in later ML approaches and more thorough testing on large-scale datasets

