Spektr: A computational tool for xray spectral analysis and imaging system optimization

Siewerdsen, J. H., et al. "Spektr: A computational tool for x-ray spectral analysis and imaging system optimization." *Medical physics* 31.11 (2004): 3057-3067.

Presented by Michael Mudgett

Project Recap

- "Low Dose Fluoroscopy for Orthopedic Surgery"
 - Pelvic Fracture
- Goals:
 - Reduce amount of radiation received by patient
 - Speed up surgical procedure
- Generate x-ray images and train a neural network to improve low dose image quality, negating need for many high dose digital radiographs

Key Result

- Developed a model to generate x-ray spectra
 - Histogram of photon density vs photon energy (keV)
- Added flexibility to allow for a wide range of kVp, added filtration, etc.
- Written in MATLAB, implemented a GUI

Discussion

- Program lacks features which would make it more realistic
 - Assumes x-ray tube can tolerate any heat load
- Did not thoroughly test performance with multiple filtration layers
- Many possible features that could be implemented in future
- Can be used to determine optimal physical configurations

Evaluation

Pros	Cons
Easy to use, accessible model	Little validation with real measurements, large analysis of theoretical results
Thorough explanation of calculations	No comparison to other models
Suggests features for future iterations and specific applications	Potential deviations from a "true" system (unavoidable)

Relevance/Conclusions

- Allows me to quickly and accurately generate x-ray spectra for image and dose simulation
- Easy to use
- Flexibility to vary parameters
- Outputs spectrum data into format which the simulating software can interpret

Thank you!

- Team Members: Michael Mudgett, Mariya Kazachkova
- Mentors: Mathias Unberath, PhD, Nico Zaech, Bastian Bier
- Faculty: Nassir Navab, PhD, Greg Osgood, MD