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Background 
    In internal pelvic fracture reconstruction surgery, the surgeon inserts a k-wire into the pelvis to 
align the fractured bones. In order to know where the wire is and what trajectory it is following, 
the surgeon must use x-ray images. Typically, over 100 digital radiographs are taken during the 
insertion of one k-wire. In order to get a clear view of the instrumentation and pelvic bones, the 
surgeon images with high dose digital radiographs. The dose of each image adds up over the 
course of the surgery and can have negative effects on the patient. More importantly, the 
surgeon will accumulate a small radiation dose due to the photon scattering. Over many 
procedures, this dose will accumulate quickly. Finally, the discrete nature of digital radiographs 
causes the procedure to stop every time an image is taken. Our aim is to address these issues 
by enabling the use of hyper-low dose images. In the long term, we would like to shorten the 
overall surgery by applying hyper-low dose fluoroscopy. 
 
Problem 
    The obvious solutions for the high dose problem are to either take less images or to take 
lower dose images. Because the surgeon needs to stay updated on the k-wire trajectory, the 
second choice seems best. However, low-dose images lose much of their information content 
and are noisy. It can be very difficult to ascertain the bone structures and tool location. Likewise, 
surgeons do not want to risk misjudging the trajectory from a poor image. Thus, the problem is 
finding a method to extract what little information there is in a low-dose image and then display it 
in a way the surgeon can interpret. The surgeon only needs to verify the location of the tool 
relative to the bone, so this serves as a minimum functionality test for the solution.  
 
Approach 
    We took a two-step approach to this problem. The first approach was to lower the dose by 
physically affecting the filtration on the x-ray emitter. It is known that copper and aluminum 
filtration filter low-energy photons so that a larger proportion of relatively high dose photons 
reach the subject and detector. Because the attenuation difference between bone and soft 
tissue increases at higher energies, this suggests that added filtration would make the bone in 
an image more clear. Although the higher proportion of high energy photons means that for the 
same number of photons, the dose will be larger, we noted that if the image quality is improved 
significantly we could lower the dose while still maintaining the same image quality. In order to 
investigate this, we used, MC-GPU, a software for generating x-ray images based on monte 
carlo simulations [2]. Along with this, we generated custom x-ray spectra using Spektr [6]. By 
projecting x-ray images at various spectra and recording the simulated dose measurements, we 
evaluated image quality and dose with changing filtration parameters. 
    The second step, which would allow us to lower the dose by lowering the mAs of the x-ray 
machine, was a deep learning network which could resolve noisy images. Many denoising 
networks perform very well and many have been applied to x-ray images but there are some 
limitations here [5]. For example, denoising networks perform very well with Gaussian noise; it is 
not difficult to learn noise that is normally distributed. Digital radiographs, however, exhibit 
Poisson noise rather than Gaussian, and the noise at each pixel does not come from the same 
Poisson distribution. In short, this means that as the number of photons increases in a region, 
so does the variance of the noise. Because the noise variance is not the same throughout the 
image, there is much more for a network to learn. Thus, performance is not as strong as would 



normally be expected. Our deep learning pipeline addresses this in a key step, the Generalized 
Anscombe Transform, which is discussed in more detail in the methods section. 
    With these two steps, we have investigated two different methods for effectively lowering the 
emitted dose in the operating room. The in silico analysis is detailed below but testing with an 
actual scanner would be required for full validation. This is clearly a future step for the project. 

 
Fig 1. Denoising Pipeline Structure 

 
Methods 
    For the spectrum-dose analysis portion of the project, we downloaded MC-GPU for monte 
carlo image simulation and set it up running on a GPU. As stated above, energy spectra were 
generated with Spektr. Given a voxel file, MC-GPU was able to interface with the energy 
spectrum files and simulated an x-ray image. We changed the source code slightly to compute 
the overall dose rather than the dose per photon and printed this to a separate text file. This 
way, if we generated multiple images, we could store the overall dose for later analysis. A user 
can alter the dose in MC-GPU by changing the number of photons, and then dose scales 
linearly with number of photons. We simulated radiographs for a set of spectra at different 
photon levels and then scaled the photon levels accordingly so that we could generate images 
with equivalent soft tissue dose across multiple spectra. These equidose images allowed us to 
study the change in image quality cross spectra when dose is held constant. From a literature 
search, we found that image quality improves with increasing copper filtration at lower kVp 
values and that this improvement levels off at around 0.3mm of copper. Our initial findings 
suggested that more copper will continuously improve the image quality but this is not realistic. 
With more filtration, the x-ray source must be on for more time and with more than 0.3mm of 
copper, the load becomes very large and the tube can overheat. This is not something that 
would be apparent in a computer simulation and thus it is important that the work done here be 
validated with an actual imaging system. Furthermore, there is no concrete method of 
measuring the quality of an image. SSIM (Structural Similarity Index) is a common method but it 
does not work very well on noisy monte carlo images because although images look similar, the 
individual pixel values can vary by a lot. In conclusion, we verified that as filtration levels 
increase, the the SNR (signal to noise ratio) will improve when dose is held constant). The next 
step would be to hold the SNR or some other quality measure constant and then find the 
minimum dose required to achieve that quality for each spectrum. This would take much more 
computational time because the image quality does not linearly scale with dose and we would 
have to test a range of dose levels. Moving forward with this would be very dependent on how 



different the dose is to create a “good” quality image in no filtration and high filtration. Once this 
value is known, we would continue with testing on an actual system and selecting a best dose 
profile for this procedure. 
    The deep learning network was designed to denoise a noisy low dose image and restore the 
image quality to a level where it could be used by a surgeon. Note that this does not necessarily 
mean it must be restored to the level of a high dose image. If the surgeon only has to make a 
decision on whether or not the tool is within the bone, only a small area of the image needs 
strong structural definition. As mentioned above, applying an existing denoising network to an x-
ray image is difficult because the noise is drawn from a Poisson distribution. This is why we 
chose to employ the GAT (Generalized Anscombe Transform), which transforms a random 
variable with a Possion distribution into the Gaussian distribution space [7]. An issue that arises 
here, however, is that the transform cannot be applied directly to the noisy image. The transform 
assumes that the means which the Poisson distributions are drawn from are known and this is 
not true for the noisy image. In this case, we would need an example high dose image to know 
the actual value (the means of the Poisson distributions) of an image and then stabilize the 
noise with this information. Since we are trying to eliminate the need for a high dose image, this 
posed a problem. We decided to use a cGAN (conditional generative adversarial network) to 
generate a guide “high dose” image which can supply those means given only the low dose 
image [3]. The structure of the overall pipeline is as follows: 
    The initial low dose image is fed into the cGAN. We transform the image to the attenuation 
domain to reduce dynamic range in order to coax the cGAN to learn the more detailed structure 
of the pelvis rather than the background (this transformation is undone before saving the output 
images). Because the cGAN was trained to generate high dose images from low dose images, it 
outputs a “high dose” image with smooth values close to those of the high dose image. This 
image cannot be used for surgical procedures because the cGAN does not necessarily recreate 
the structure perfectly. The output of this network is now called the guide image. The guide 
image and the original low dose image are fed into the first GAT layer of the network. Here, the 
guide image is transformed from the intensity space into the photon space (multiplication by a 
scalar) and then the GAT of this image is computed. To stabilize the variance in the low dose 
image, we linearize the transform for each pixel around the value provided by the guide image. 
We use a first order Taylor expansion to accomplish this: 

GAT(lowdose) GAT(guide) + GAT'(guide)(lowdose-guide) 
This transformation returns a low dose (noisy) image with an approximately constant standard 
deviation in local regions throughout the image. The stabilized low dose image then goes into a 
denoising network. The network we chose applies residual learning to learn the noise of input 
images [4]. Thus, the output of the network is just noise (loss is ultimately computed between 
the predicted noise and actual noise). Next, the noise is subtracted from the noisy image to 
produce a stabilized denoised image. The last step is to perform the inverse of the original GAT 
layer and return the denoised image to the Poisson domain. The inverse of the above equation 
is used, where the output is lowdose rather than GAT(lowdose). After this step, we have our 
denoised image in its original domain. 
    For this pipeline, the cGAN and denoising network (DnCNN) were implemented from 
established repositories and edited to fit our problem. For example, we trained on TIFF images 
to maintain precision. The code for the GAT equation was downloaded but we developed the 
GAT and inverse-GAT layers on our own. They were implemented as PyTorch layers and thus 
required forward() and backward() methods to allow for correct backpropagation through our 
network. The pipeline can train and test end-to-end with low and high dose training and test 
images supplied. 
    To generate the data for the network, DeepDRR was used to generate simulated x-ray 
images [1]. Because DeepDRR takes in photon count (photons per detector pixel) as a 
parameter, we could not easily quantify the patient dose. For the dataset, the clean images 



were saved at a step in the pipeline before any noise is introduced. This image resembles a 
very high dose image with no noise and serves as a strong reference image for the network. 
DeepDRR then applies Poisson noise based on the photon count. We looked at image metrics 
for a variety of photon counts and chose the lowest count which maintained most of the clean 
image properties to be “100% dose.” This value was then divided by 10 for “10% dose” and 
these were deemed hyper-low dose. We trained the network with the 10% dose images. 
 

 
Fig 2. Monte Carlo simulated radiographs generated at 60 kVp and constant soft tissue dose. 
From left to right, the spectrum was filtered with 0.0mm Cu, 0.1mm Cu, 0.2mm Cu, 0.3mm Cu. 

The copper filters out low-energy photons, increasing the contrast between bone and the 
background. 

 

 
Fig 3. Results of the denoising pipeline. Each row contains a low dose, denoised, and high dose 

reference image. The rows show two different images from the test set. Red arrows indicate 
structures recovered by the deep learning pipeline 

 



 
Fig 4. Two patches used to train the denoising network. The left image shows the scaled noisy 

patch with inconsistent standard deviation. The noise-stabilized image exhibits much more 
consistent standard deviation values throughout the image. 

 
Results + Discussion 
    The results from our work with dose/spectrum/image quality analysis show that in simulation 
there is an improvement in image quality as filtration increases. However, though the images at 
similar dose look different at the same window/level, these can be altered and the images will 
look very similar to the naked eye. As discussed in the methods section, more work would need 
to be done in this area to fully evaluate and identify the best spectrum. For this type of problem, 
it is difficult to relate the simulation data to real-world images and this step is imperative for 
discovering something that can be applied in a surgical setting. 
    We trained the pipeline with a training set of 3,780 simulated x-ray images. These were taken 
on 5 different CT volumes. Each volume was imaged at a variety of angles (rotations around the 
sphere) and from different source-detector distances (zoomed in vs zoomed out). As mentioned 
above, the input hyper-low dose images were deemed “10% dose.” Because these were not 
generated with a real imaging system, this value is heuristic and might not reflect the actual 
change in dose to a patient. The test set consisted of images taken from similar camera 
positions but on a completely separate volume. This component was very important for 
assessing the performance of our network. All generated images were 320 x 240 px to prevent 
memory overflows during training. The denoising network trained on patches taken at a small 
stride to increase the amount of training data. 100 x 100 px patches snipped from the training 
set were used to train the network. Both the cGAN and denoising network were trained for 100 
epochs, at which point the models appeared to converge. 
    Looking at the data, it is visually apparent that the denoised image is substantially more clear 
than the noisy image. Some of the harder to discern structures are recovered by the network 
and there is a strong resemblance between the denoised and clean image. It is not clear that 
the image would be ready for use in a surgery. Furthermore, the images with a synthetic tool 
were tested on the network. The results showed that the k-wire was almost entirely removed, 
but this should be expected. The pipeline was not trained on any images with instrumentation so 
when it is given an image with a tool, it would not “treat” it correctly. We hypothesize that if a 



large dataset of images with instrumentation was used for training, the network would easily 
recover the tool placement. Likewise, to improve the contrast around the pubic arch, we could 
add more training images which highlight only this location. Nonetheless, the CT volumes we 
used were cropped, giving much brighter regions around the edges. This brightness was 
caused by the lack of soft tissue and air in the volume. In a full CT, this effect would not occur. 
Moving forward, a training set that does not have this effect would be ideal. 
    Looking specifically at the effects of the GAT layer, we see that when a noisy image is 
stabilized by the GAT layer, the local standard deviation in a region is far more constant across 
a patch than in the original noisy image. This step greatly improved the performance of the 
denoising network. 
 
Significance + Future Work 
    This work is significant because it pushes the limit of how far one can reduce the radiation 
dose while still denoising a useful image. With more time, better training data, and real-world 
experiments, the lower limit for dose can be characterized. Likewise, the model is fast and could 
be implemented in the operating room for real-time image improvement. 
    In the future, the goal is to apply this model to live fluoroscopic video. Our plan is to use an 
LSTM (long short-term memory) to retain information about past images and improve the quality 
of low-dose video. If implemented, the pipeline would address the start-stop nature of the 
current procedure, as discussed above. Before this however, an improved and expanded 
training set and preliminary testing on a physical imaging system would be necessary. 
 
Conclusion 
    We have developed and implemented a deep learning pipeline to improve the quality of 
hyper-low dose digital radiographs. We have trained the model and assessed test output but 
there are still many steps before it is ready for surgical use. Nonetheless, the pipeline structure 
is in place and we believe that a more comprehensive training set would vastly improve the 
output of this network. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Management Summary 
Who did what 
    Mariya’s main task was implementing the deep learning pipeline. Michael generated all 
images, both for dose/spectrum analysis and for deep learning training/testing. When 
troubleshooting network performance and debugging (there was a lot of debugging), we made 
use of partnered programming. 
 
What was accomplished vs what was planned 
    Our original maximum deliverable was to have a functional LSTM network which could 
denoise continuous fluoroscopic video. We were not able to achieve this goal, but that is 
because our expected deliverable (the pipeline) became much more complex as the semester 
went on. Originally, our plan was to implement a denoising network and then move directly to 
LSTM implementation. However, the issue with Poisson noise (discussed above) became 
apparent and our mentors explained the importance of the GAT stabilization step. We 
experimented with multiple network structures (i.e. using a variational autoencoder in place of a 
cGAN) before settling on a final design. We only accomplished our expected deliverable, but we 
were able to dive much deeper into the topic and develop a complex model that addresses the 
inherent problems in denoising x-ray images. Overall, we believe it was better to focus more on 
one task and generate strong results with that rather than overlook the details and have a sub-
par LSTM. 
 
Next steps 
    As was previously mentioned, the next steps in this project would be to modify the pipeline to 
be applicable for fluoroscopic data. This would likely mean using an LSTM network to retain 
relevant information throughout timesteps. Prior to doing this, it would be necessary to create a 
larger training set in order to better generalize to testing data. Additionally, testing the pipeline in 
a mock-OR would be crucial in verifying its success on real images rather than generated 
ones.   
 
What we learned 
    We learned that when it comes to software, setup takes much longer than expected and 
should not be overlooked! We set aside much less time for setup than it actually took. Likewise, 
we better understand the value of partnered programming, as having two people looking at the 
code means we are twice as likely to catch mistakes. 
    On the subject matter, we learned a great deal about x-ray imaging and deep learning. 
 

 

 

 

 

 

 

 

 

 



Technical Appendix 
See course website for link to code and documentation. 
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