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Project Recap
● Big picture: reduce total radiation inflicted on patient through x-ray 

imaging during orthopedic surgery while increasing the temporal 
resolution of X-ray imaging

● Enable use of low-dose live fluoroscopic video in orthopedic surgery
● Project goals:

○ Develop low dose profile for taking fluoroscopic video
○ Develop method for improving image quality of low dose fluoroscopy given initial high 

dose image



Project Recap

Trained Model

● Noisy image
● Hard to resolve bone/instrumentation
● Low dose to patient
● Continuous video feed (max deliverable)

● Clean image
● Would normally give large dose 

to patient



Project Progress - Image/Dose Simulation (Mike)
● Two techniques

○ Monte Carlo GPU
■ Slow
■ Dose Simulation

○ DeepDRR
■ Fast
■ Image generation

● Analyzing effects of filtration
○ Dose and image quality

● Developing methods for mass production
● Lots of time setting up, automating, 

manipulating program



Project Progress - Deep Learning (Mariya)



Project Progress - Deep Learning

● y = x + v 
○ y is noisy input to network
○ x is clean image
○ v is noise

● Learn R(y) ≈ v
● Can then do x’ = y - R(y) 

Zhang, Kai & Zuo, Wangmeng & Chen, Yunjin & Meng, Deyu & Zhang, 
Lei. (2016). Beyond a Gaussian Denoiser: Residual Learning of Deep 
CNN for Image Denoising. IEEE Transactions on Image Processing. PP. 
10.1109/TIP.2017.2662206. 



Project Progress - Next Steps
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● GAT = generalized Anscombe 
transformation

○ Variance stabilization
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Updated Deliverables
● Minimum: 

○ Simulate a set of x-ray images with varying dose parameters
■ Quantify dose received by patient and image quality

○ Implemented neural network which can denoise a single image - no prior (Python code + doc)

● Expected:
○ Functioning denoising network to improve image quality of a still, low-dose image from a 

high-dose DR
○ (NEW) Functioning denoising pipeline to improve quality of still, low-dose images without the 

need for a high-dose DR
○ Chosen dose profile to minimize dose but maximize image quality

● Maximum:
○ LSTM for continuous fluoroscopy (video)



Updated Milestones
Milestone 1 Milestone 2 Milestone 3 Milestone 4

Date 3/18/18 4/1/18 4/2218 5/6/18

Work
- Generate comprehensive  

set of simulated x-ray 
images

- Train a NN to denoise 
one of the low-dose 

images

- Analyze image 
quality/dose/improvability 
and choose the best dose 

profile

- LSTM for live fluoroscopy

Deliverable 
(Measurable)

- Bank of images

- Quantified dose/quality 
relationship for each profile

- An improved low-dose 
image that can be used in 

a surgical setting

- NN code and 
documentation 

- Chosen dose profile that 
is realistic, lessens dose 

received by patient, works 
with NN

- NN pipeline that denoises 
a low dose image without 
the need for a high-dose 
DR (+ documentation)

- Set of continuous images 
improved by the network

- Time-analysis of NN 
performance

- Code and documentation

Backup Plan - Completed - Completed
- Choose the best profile, 

go back to milestone 1 and 
rework parameters

-Improve small sequences 
of images, move up to 

video feed



Updated Schedule



Updated Dependencies
 Dependency Plan to 

Resolve Date Expected Date Needed Contingency 
Plan

MCGPU/Python 
Software

Downloaded 
(Free) Complete - -

GPU Access for 
Running 

MCGPU/Neural Net

Machines (with 
software) in 
Navab lab

Complete - -

CT Volumes for 
Generating X-Ray 

Images

Downloaded 
from NIH Cancer 
Imaging Archive

Complete - -

Video for LSTM Mentor acquiring 4/20/18 4/22/18 Photoshop 
instrumentation



Management Plan
● Weekly meetings with Mathias (when available) and Nico

○ Wednesday at 10am

● Team meetings -- biweekly (Monday and Friday)
○ Bitbucket for code management

● Meeting with Prof. Navab/Dr. Osgood when expert knowledge is required
○ i.e. determining whether an image is clear enough for use in surgery
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