AR-Assisted Medical Training:

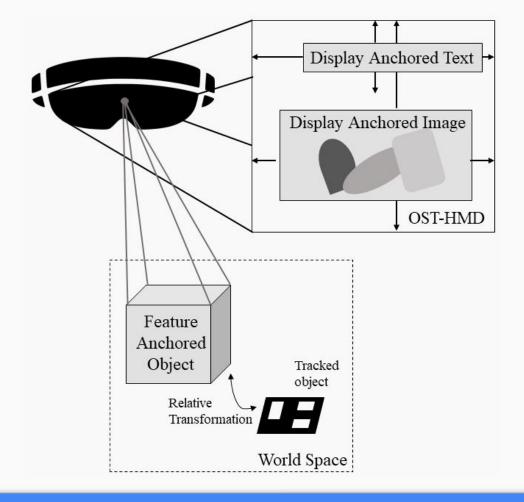
Tutorial Generation & Eye Gaze Tracking Analysis

Team members: Prateek Bhatnagar and Allan Wang

Mentors: Ehsan Azimi, Chien-Ming Huang, Peter Kazanzides, and Nassir Navab

Goals

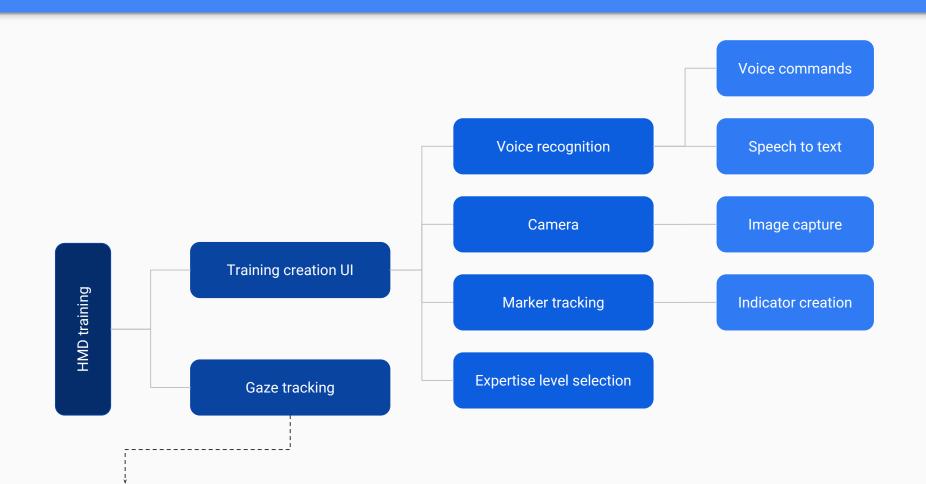
- Create a software tool to facilitate the semi-automated creation of medical training tutorials
 - Capture speech and visual data
 - o Provide a user-friendly AR interface through which JSON training files may be generated
- Use eye gaze tracking data to facilitate performance analysis
 - Generate heatmap while user is being trained


Background

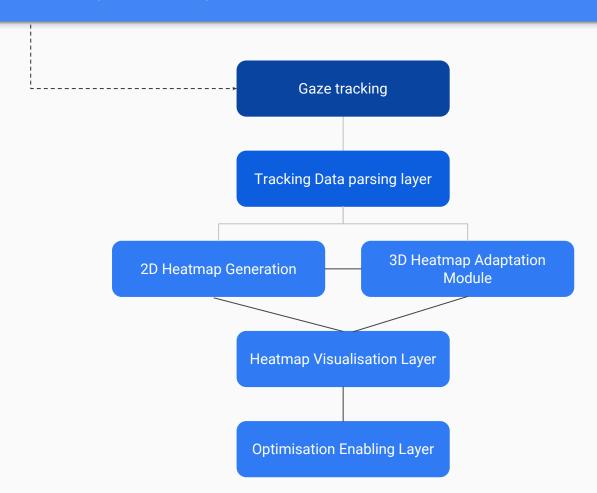
- HMDs have been used for treatment, education, rehabilitation, and surgery
- The current framework stores step-by-step instructions for various procedures
- Instructions and visual aids are displayed as graphical overlays in the HMDs to the trainees

Current state

```
"TrainingTask": {
  "Version": 1.4.
  "Name": "Needle Decompression",
  "ResourcesPath": "needleDecomp/",
  "Steps": [
    {"Name": "1) Prepare tools",
    {"Name": "2) Locate the Second
            Intercostal Space (SIS)",
    {"Name": "3) Prepare the area with
            alcohol wipes", ......},
    {"Name": "4) Firmly insert needle
           and catheter until 3-1/4 inch
           (8 centimeters) into the SIS",
           .....},
    {"Name": "7) Secure the catheter
           hub to the chest", ......}]
```


```
"Name": "1) Prepare tools",
"Version": 1.2.
"Duration": 0,
"FeatureAnchoredObjects": [{
  "Image Path": "tool.jpg",
  "Position": [x, y, z],
  "Orientation": [qx, qy, qz, qw],
  "AnimationPath": [],
  "MarkerName": "intracostalspace"}].
"DisplayAnchoredImage": [{
  "Image Path": "pathology.png",
  "Position": [x, y, z],
  "AnimationPath": [{
    "Position": [x, y, z],
    "Time": t }]}],
"DisplayAnchoredText": [{
  "Text": "",
  "Position": [x, y, z],
  "Scale": 1.
  "BackgroundColor": [r, g, b]}]
```

- Microsoft HoloLens
- Currently must have a medical professional manually specify steps and reference images
- JSON files are relatively difficult to create/edit
- Our project seeks to facilitate the generation of training data


Technical Approach

- The content generation tool will be developed on Unity
 - Visual Studio with Windows 10 SDK
 - Vuforia (Unity extension)
- Use Pupil Labs HoloLens Binocular Add-on for gaze tracking
 - Functions/libraries are in C/C++
 - These are held together with Python (Cython)

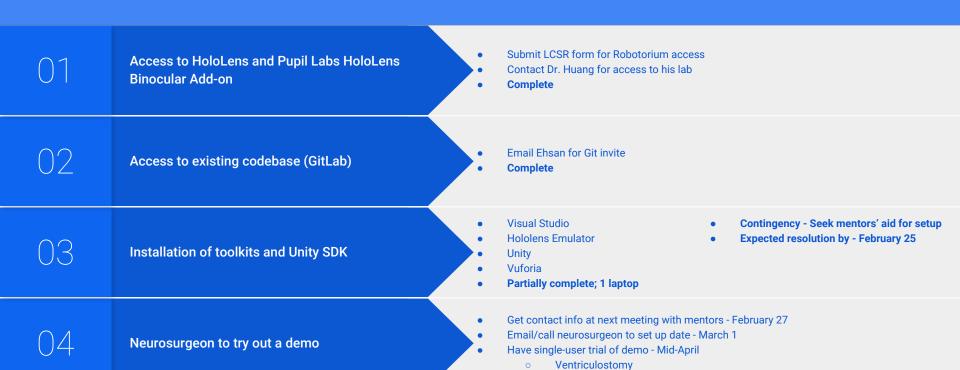
Planned Modules

Planned Modules (continued)

Deliverables

Minimum

- Working demo of tutorial editor
 - Speech-to-text
 - Generation of 2D heatmap of gaze


Expected

- Working demo of tutorial editor
 - Speech-to-text
 - Image capture
- Generation of 2D and 3D heatmap of of gaze
 - Ability to view heatmap data in using a graphical aid - either within the Hololens or some interactive 3D environment

Maximum

- Working demo of tutorial editor
 - Speech-to-text
 - Image capture
 - Marker creation
 - Expertise levels
- Using 3D and 2D gaze tracking heatmaps to optimize processes
- Testing with ventriculostomy procedure under guidance of medical professional

Dependencies

Management Plan

- Weekly meetings with collaborating team
 - Tuesdays after class (3pm)
 - Discuss integration
 - Review compatibility
- Biweekly meetings with mentors
 - Updates on progress
 - Conflict and dependency resolution
- Source control
 - Develop on a branch of existing codebase
 - GitLab repository

Milestones

March 18 March 31 April 28 April 15 May 6 **User Interface** Text-to-Speech & **Image Capture, Marker Creation & Final Report & Working Demo &** 2D Heatmaps 3D Heatmaps Demo **Single User Trial** Able to generate Able to accept Tutorials include Implement Have demo voice text-based both text and ability to create ready for live commands tutorials virtual markers demonstration images Synchronizing Gaze-tracking 3D heatmaps Complete final Have with video feed implemented added report and neurosurgeon with 2D create training presentation heatmaps module

Task Name	Duration	Feb 2018				Mar 2018				Apr 2018				May 2018			
		1W	2W	3W	4W	1W	2W	3W	4W	1W	2W	ЗW	4W	1W	2W	3W	4W
Become familiar with codebase & software																	
- Literature review	2/13-2/28																
- Install HoloLens development tools	2/20-2/22																
- Familiarize ourselves with Unity	2/22-2/28																
Documentation																	
- Prototype design	2/23-3/6																
- Prototype code	3/1-3/31								,								
- Advanced feature design	2/23-3/6				î												
- Advanced feature code	4/1-4/30													9			
Initial implementation of basic prototypes																	
- Content generator interface	3/2-4/16																
- Voice commands	3/9-4/16																
- Speech-to-text	3/17-3/31																
- 2D heatmaps	3/1-3/31																
Troubleshooting/testing prototype																	
- Bugfixing	4/1-4/7																
Advanced implementations																	
- Image capture	4/6-4/15													10			
- Marker creator	4/16-4/29																
- 3D heatmaps	4/1-4/30																
Troubleshooting/testing advanced changes																	
- Bugfixing	5/1-5/7														4		
Single-user trial																	
Final report	4/16-5/7																

References

- 1. Evaluation of Optical See-Through Head-Mounted Displays in Training for Critical Care and Trauma.
- 2. Microsoft Mixed Reality: https://developer.microsoft.com/en-us/windows/mixed-reality/
 - a. Mixed Reality Tools: https://developer.microsoft.com/en-us/windows/mixed-reality/install_the_tools
 - b. Microsoft Mixed Reality Academy: https://developer.microsoft.com/en-us/windows/mixed-reality/academy
- 3. Pupil Labs Documentation: https://docs.pupil-labs.com/

Reading List

- 1. Evaluation of Optical See-Through Head-Mounted Displays in Training for Critical Care and Trauma.
- 2. Kato, H., & Billinghurst, M. (1999). Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. In Proceedings of the 2Nd IEEE and ACM International Workshop on Augmented Reality (p. 85--). Washington, DC, USA: IEEE Computer Society. Retrieved from http://dl.acm.org/citation.cfm?id=857202.858134
- 3. Birt, J., Cowling, M., & Moore, E. (2015). Augmenting distance education skills development in paramedic science through mixed media visualisation.
- 4. Armstrong, D. G., Rankin, T. M., Giovinco, N. A., Mills, J. L., & Matsuoka, Y. (2014). A heads-up display for diabetic limb salvage surgery: a view through the google looking glass. Journal of Diabetes Science and Technology, 8(5), 951–6. https://doi.org/10.1177/1932296814535561
- 5. Tai, B. L., Rooney, D., Stephenson, F., Liao, P.-S., Sagher, O., Shih, A. J., & Savastano, L. E. (2015). Development of a 3D-printed external ventricular drain placement simulator: technical note. Journal of Neurosurgery, 123(4), 1070–6. https://doi.org/10.3171/2014.12.JNS141867
- 6. Atkins, M. S., Tien, G., Khan, R. S. A., Meneghetti, A., & Zheng, B. (2013). What do surgeons see: capturing and synchronizing eye gaze for surgery applications. Surgical Innovation, 20(3), 241–8. https://doi.org/10.1177/1553350612449075
- 7. Kersten-Oertel, M., Jannin, P., & Collins, D. L. (2012). DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Transactions on Visualization and Computer Graphics, 18(2), 332–52. https://doi.org/10.1109/TVCG.2011.50
- 8. Eck, U., Stefan, P., Laga, H., Sandor, C., Fallavollita, P., & Navab, N. (2016). Exploring Visuo-Haptic Augmented Reality User Interfaces for Stereo-Tactic Neurosurgery Planning. In G. Zheng, H. Liao, P. Jannin, P. Cattin, & S.-L. Lee (Eds.), Medical Imaging and Augmented Reality (pp. 208–220). Cham: Springer International Publishing.