AR-Assisted Medical Training:

Tutorial Generation & Eye Gaze Tracking Analysis

Team members: Prateek Bhatnagar and Allan Wang

Mentors: Ehsan Azimi, Chien-Ming Huang, Peter Kazanzides, Nassir Navab, and Camilo Molina

Review of Project and Goals

- Create a software tool to facilitate the semi-automated creation of medical training tutorials
 - Capture speech and visual data
 - Provide a user-friendly AR interface to generate JSON training files
- Use eye gaze tracking data to facilitate performance analysis
 - Facilitate image capture for tutorials
 - Generate heatmaps during training

Current State: Tutorial Generation

- Voice commands implemented
 - "Next," "Snap," "Start recording"
- Dictation implemented
 - Saving to JSON files
- Images can be saved

Current Functionality

Software Structure

Current State: Gaze Tracking

- Gaze Tracking works!
 - Gaze tracking calibration works
 - The Capture service is able to stream the tracked eye coordinates
- The Unity application is able to
 - Display a generated Heatmap
 - As well as aid with calibration.
- The current workflow:
 - Pro It works
 - o Con Its very inefficient
 - o Requires a small overhaul

Control Flow for Heatmap

Current Functionality : Gaze Tracking

Black is set to be Transparent for the Hololens

Documentation

- Currently using Github to track changes
- Code has been commented
- OneDrive Used as a secondary backup

```
/// <summary>
/// Beginning dictation on voice command
/// </summary>
public void OnDictationStart() {
    renderer.material.color = Color.red;
    dictationOutputText.color = Color.red;
    ToggleRecording(); // toggle dictation recording
}

/// <summary>
/// Begin next step. Reset text and increment counter.
/// </summary>
public void OnNextStep() {
    stepCounth+; /increment step counter
    stepCountDisplayText.text = "Step" + stepCount.ToString(); // update step number
    dictationOutputText.text = "Say, \"Start recording\" to record text."; // reset instructional text
    cameraStatusText.text = "Camera ready"; // reset camera status
    renderer.material.color = Color.white;
    dictationOutputText.color = Color.white;
}
```

Progress

- Minimum
 - Working demo of tutorial editor
 - Speech-to-text ✓
 - Generation of 2D heatmap of gaze ✔
- Expected
 - Working demo of tutorial editor
 - Speech-to-text ✓
 - Image capture, **In Progress**
 - Generation of 2D and 3D heatmap of of gaze
 - In Progress

Maximum

- Working demo of tutorial editor
 - Speech-to-text
 - Image capture
 - Marker creation
 - Expertise levels
- Using 3D and 2D gaze tracking heatmaps to optimize processes
- Testing with ventriculostomy procedure under guidance of medical professional

Potential obstacles

Tutorials

Displaying captured image to a texture in Unity to have a "live preview"

Heatmaps

- Interface between spatial heatmap and captured image
- Streaming Heatmap related data to and from the hololens
- Possible Inability to run python directly on the Hololens itself there seems to be no 'EASY' way
- Recording Video off the Hololens

Upcoming Milestones

March 18 March 31 April 15 April 28 May 6 User Interface 🗸 Text-to-Speech & **Image Capture**, Marker Creation & **Final Report & Working Demo &** 2D Heatmaps ✓ 3D Heatmaps Demo **Single User Trial** Tutorials include Able to accept Able to generate Implement Have demo voice text-based both text and ability to create ready for live virtual markers demonstration commands tutorials images Synchronizing Complete final Gaze-tracking Have 3D heatmaps with video feed implemented added report and neurosurgeon with 2D create training presentation heatmaps module

Immediate Goals

- Complete photo capture: Generated tutorials will now be able to match the manually created JSON training files
- Integrate gaze tracking as a parallel process with the generator app
- Optimise Workflow for gaze streaming implementation

Reading List

- 1. Evaluation of Optical See-Through Head-Mounted Displays in Training for Critical Care and Trauma.
- 2. Kato, H., & Billinghurst, M. (1999). Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. In Proceedings of the 2Nd IEEE and ACM International Workshop on Augmented Reality (p. 85--). Washington, DC, USA: IEEE Computer Society. Retrieved from http://dl.acm.org/citation.cfm?id=857202.858134
- 3. Birt, J., Cowling, M., & Moore, E. (2015). Augmenting distance education skills development in paramedic science through mixed media visualisation.
- 4. Armstrong, D. G., Rankin, T. M., Giovinco, N. A., Mills, J. L., & Matsuoka, Y. (2014). A heads-up display for diabetic limb salvage surgery: a view through the google looking glass. Journal of Diabetes Science and Technology, 8(5), 951–6. https://doi.org/10.1177/1932296814535561
- 5. Tai, B. L., Rooney, D., Stephenson, F., Liao, P.-S., Sagher, O., Shih, A. J., & Savastano, L. E. (2015). Development of a 3D-printed external ventricular drain placement simulator: technical note. Journal of Neurosurgery, 123(4), 1070–6. https://doi.org/10.3171/2014.12.JNS141867
- 6. Atkins, M. S., Tien, G., Khan, R. S. A., Meneghetti, A., & Zheng, B. (2013). What do surgeons see: capturing and synchronizing eye gaze for surgery applications. Surgical Innovation, 20(3), 241–8. https://doi.org/10.1177/1553350612449075
- 7. Kersten-Oertel, M., Jannin, P., & Collins, D. L. (2012). DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Transactions on Visualization and Computer Graphics, 18(2), 332–52. https://doi.org/10.1109/TVCG.2011.50
- 8. Eck, U., Stefan, P., Laga, H., Sandor, C., Fallavollita, P., & Navab, N. (2016). Exploring Visuo-Haptic Augmented Reality User Interfaces for Stereo-Tactic Neurosurgery Planning. In G. Zheng, H. Liao, P. Jannin, P. Cattin, & S.-L. Lee (Eds.), Medical Imaging and Augmented Reality (pp. 208–220). Cham: Springer International Publishing.