AR-Assisted Medical Training:

Tutorial Generation & Eye Gaze Tracking Analysis

Team members: Prateek Bhatnagar and Allan Wang
Mentors: Ehsan Azimi, Chien-Ming Huang, Peter Kazanzides, Nassir Navab, and Camilo Molina
Review of Project and Goals

- Create a software tool to facilitate the **semi-automated creation** of medical training tutorials
 - Capture speech and visual data
 - Provide a user-friendly AR interface to generate JSON training files
- Use **eye gaze tracking data** to facilitate performance analysis
 - Facilitate image capture for tutorials
 - Generate heatmaps during training
Current State: Tutorial Generation

- Voice commands implemented
 - “Next,” “Snap,” “Start recording”
- Dictation implemented
 - Saving to JSON files
- Images can be saved
Current Functionality
Software Structure
Current State: Gaze Tracking

- Gaze Tracking works!
 - Gaze tracking calibration works
 - The Capture service is able to stream the tracked eye coordinates
- The Unity application is able to
 - Display a generated Heatmap
 - As well as aid with calibration
- The current workflow:
 - Pro - It works
 - Con - Its very inefficient
 - Requires a small overhaul
Control Flow for Heatmap

- Start
- Start Pupil Capture Service
- Detection For both eyes is enabled and HMD Relay is engaged
- Perform HMD to Pupil labs calibration
- Load Calibration scene
- Heatmap Visualization scene loaded
- Display cumulative Heatmap to Hololens
- Current Heatmap
- End

- Calibration data - stored temporarily by pupil capture service
- Gaze Tracking Data streamer started
- UDP Stream
- Coordinate Position Receiver
- Heatmap generation module

Colors:
- Executing on Remote Machine
- Executing on Hololens
Current Functionality: Gaze Tracking

Black is set to be Transparent for the Hololens
Documentation

- Currently using Github to track changes
- Code has been commented
- OneDrive Used as a secondary backup

```csharp
public void OnDictationStart()
{
    renderer matériel.color = Color.red;
    dictationOutputText.color = Color.red;
    ToggleRecording(); // toggle dictation recording
}

public void OnNextStep()
{
    stepCount++; // increment step counter
    stepCountDisplayText = "Step " + stepCount.ToString(); // update step number
    dictationOutputText = "Say, \"Start recording\" to record text.\"; // reset instructional text
    cameraStatusText = "Camera ready"; // reset camera status
    renderer matériel.color = Color.white;
    dictationOutputText.color = Color.white;
}
```
Progress

- **Minimum**
 - Working demo of tutorial editor ✔
 - *Speech-to-text ✔*
 - Generation of 2D heatmap of gaze ✔

- **Expected**
 - Working demo of tutorial editor
 - *Speech-to-text ✔*
 - *Image capture, In Progress*
 - Generation of 2D and 3D heatmap of gaze
 - *In Progress*

- **Maximum**
 - Working demo of tutorial editor
 - *Speech-to-text*
 - *Image capture*
 - *Marker creation*
 - *Expertise levels*
 - Using 3D and 2D gaze tracking heatmaps to optimize processes
 - Testing with ventriculostomy procedure under guidance of medical professional
Potential obstacles

- **Tutorials**
 - Displaying captured image to a texture in Unity to have a “live preview”

- **Heatmaps**
 - Interface between spatial heatmap and captured image
 - Streaming Heatmap related data to and from the hololens
 - Possible Inability to run python directly on the Hololens itself - there seems to be no ‘EASY’ way

- **Recording Video off the Hololens**
Upcoming Milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 18</td>
<td>User Interface ✔
 - Able to accept voice commands
 - Synchronizing with video feed</td>
</tr>
<tr>
<td>March 31</td>
<td>Text-to-Speech & 2D Heatmaps ✔
 - Able to generate text-based tutorials
 - Gaze-tracking implemented with 2D heatmaps</td>
</tr>
<tr>
<td>April 15</td>
<td>Image Capture, Working Demo & Single User Trial
 - Tutorials include both text and images
 - Have neurosurgeon create training module</td>
</tr>
<tr>
<td>April 28</td>
<td>Marker Creation & 3D Heatmaps
 - Implement ability to create virtual markers
 - 3D heatmaps added</td>
</tr>
<tr>
<td>May 6</td>
<td>Final Report & Demo
 - Have demo ready for live demonstration
 - Complete final report and presentation</td>
</tr>
</tbody>
</table>
Immediate Goals

- Complete photo capture: Generated tutorials will now be able to match the manually created JSON training files
- Integrate gaze tracking as a parallel process with the generator app
- Optimise Workflow for gaze streaming implementation
1. Evaluation of Optical See-Through Head-Mounted Displays in Training for Critical Care and Trauma.